
8

COMPUTER SCIENCE TRIPOS Part IB – 2014 – Paper 5

Concurrent and Distributed Systems (RNW)

(a) Monitors are a programming primitive linking data with two synchronization
types: mutual exclusion and condition synchronisation. Which is provided
implicitly; which is provided explicitly? [1 mark]

(b) Describe two ways in which Monitors and Conditional Critical Regions differ.
[2 marks]

(c) The object-oriented programming style encouraged by Monitors has many
benefits as the number of data types and locks increases in the system.

(i) Placing all data in a single Monitor may improve program correctness.
Explain why this might have undesirable performance effects. [1 mark]

(ii) One problem that can arise when using multiple locks is deadlock, which can
be prevented by imposing a partial order on locks. Describe the implications
this has for code structure when using Monitors. [2 marks]

(iii) Explain why Java’s Monitor feature does not necessarily impose this code
structure. [2 marks]

(d) Condition variables allow condition satisfaction to be signalled between threads.
Explain the difference between Hoare’s signal-and-wait and Mesa’s signal-and-
continue in terms of mutual exclusion and scheduling. [4 marks]

(e) Consider the (incorrect) pseudocode on the next page:

(i) Describe and justify minimal modifications to this code, referencing line
numbers, in order to make it correct in the presence of Hoare signal-and-wait
semantics. [4 marks]

(ii) Describe and justify minimal modifications to this code, referencing
line numbers, in order to make it correct in the presence of Mesa
signal-and-continue semantics. [4 marks]

[continued . . . ]

1



1: monitor ProducerConsumer {

2: int in, out, buf[N];

3: condition notfull, notempty;

4:

5: procedure produce(item) {

6: if ((in-out) == N)

7: wait(notfull);

8: buf[in % N] = item;

9: if ((in-out) == 0)

10: signal(notempty);

11: in = in + 1;

12: }

13:

14: procedure int consume() {

15: if ((in-out) == 0)

16: wait(notempty);

17: item = buf[out % N];

18: if ((in-out) == N)

19: signal(notfull);

20: out = out + 1;

21: }

22:

23: /* init */ { in = out = 0; }

24: }

2


