COMPUTER SCIENCE TRIPOS Part IB - 2014 - Paper 4

9 Security I (MGK)

Block ciphers usually process 64 or 128-bit blocks at a time. To illustrate how their modes of operation work, we can use instead a pseudo-random permutation that operates on the 26 letters of the English alphabet:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
m																	•									
$E_K(m)$	Р	K	X	С	Y	W	R	S	Е	J	U	D	G	0	Z	Α	T	N	M	V	F	Н	L	Ι	В	Q

As the XOR operation is not defined on the set $\{A, ..., Z\}$, we replace it here during encryption with modulo-26 addition (e.g., $C \oplus D = F$ and $Y \oplus C = A$).

- (a) Encrypt the plaintext "TRIPOS" using:
 - (i) electronic codebook mode; [2 marks]
 - (ii) cipher-block chaining (using IV $c_0 = K$); [4 marks]
 - (iii) output feedback mode (using IV $c_0 = K$). [4 marks]
- (b) Decrypt the ciphertext "BSMILVO" using cipher-block chaining. What operation should replace XOR? [4 marks]
- (c) Your opponent is allowed to send you two plaintext messages M_0 and M_1 , each n letters long. You now pick a new private key K, resulting in a new pseudo-random permutation $E_K : \{A, \ldots, Z\} \leftrightarrow \{A, \ldots, Z\}$. You also pick uniformly at random a private bit $b \in \{0, 1\}$ and return a ciphertext $C = c_0c_1 \ldots c_n$, namely the message M_b encrypted with cipher-block chaining using the fresh E_K . Finally, your opponent has to guess your bit b.

Approximately how large must n be at least for your opponent to have a greater than 75% chance of guessing b correctly? Outline a strategy that your opponent can use to achieve this. [6 marks]