COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 2

8 Discrete Mathematics (MPF)

(a) Let $\# X$ denote the cardinality of a set X.

Define a unary predicate P for which the statement
\forall sets $X .[P(\# X) \Longleftrightarrow(\forall \operatorname{sets} A, B . A \times X=B \times X \Longrightarrow A=B)]$
holds.
Prove the statement for your given predicate P.
(b) For sets X, Y, Z, let $(X \Rightarrow Y)$ denote the set of functions from X to Y and let $\mathcal{P}(Z)$ be the powerset of Z.

For sets A and B, consider the function

$$
(\cdot)^{\sharp}:(A \Rightarrow \mathcal{P}(B)) \longrightarrow(\mathcal{P}(A) \Rightarrow \mathcal{P}(B))
$$

given, for all $f \in(A \Rightarrow \mathcal{P}(B))$ and $X \in \mathcal{P}(A)$, by

$$
f^{\sharp}(X)=\bigcup_{a \in X} f(a)
$$

Show that for all $g \in(\mathcal{P}(A) \Rightarrow \mathcal{P}(B))$ there exists $f \in(A \Rightarrow \mathcal{P}(B))$ such that $f^{\sharp}=g$ iff, for all $\mathcal{F} \subseteq \mathcal{P}(A), g\left(\bigcup_{X \in \mathcal{F}} X\right)=\bigcup_{X \in \mathcal{F}} g(X)$.
(c) For sets S and A, let $\operatorname{Bij}(S, S)$ be the set of bijections from S to S, let $\operatorname{Inj}(S, A)$ be the set of injections from S to A, and let $\mathcal{P}_{S}(A)=\{X \subseteq A \mid X \cong S\}$ be the set of subsets of A that are in bijection with S.
(i) Prove that the relation $\approx \subseteq \operatorname{Inj}(S, A) \times \operatorname{Inj}(S, A)$ defined, for all $f, g \in \operatorname{Inj}(S, A)$, by

$$
f \approx g \Longleftrightarrow \exists h \in \operatorname{Bij}(S, S) . f=g \circ h
$$

is an equivalence relation.
(ii) Define a bijection

$$
\operatorname{Inj}(S, A) / \approx \longrightarrow \mathcal{P}_{S}(A)
$$

You need not prove your function is bijective, but you should explain why your mapping is well defined.

