COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 2

7 Discrete Mathematics (MPF)

(a) Let m be a fixed positive integer.
(i) For an integer c, let $K_{c}=\{k \in \mathbb{N} \mid k \equiv c(\bmod m)\}$.

Show that, for all $c \in \mathbb{Z}$, the set K_{c} is non-empty.
(ii) For an integer c, let κ_{c} be the least element of K_{c}.

Prove that for all $a, b \in \mathbb{Z}, a \equiv b(\bmod m)$ iff $\kappa_{a}=\kappa_{b}$.
(b) (i) State Fermat's Little Theorem.
(ii) Prove that for all natural numbers m and n, and for all prime numbers p, if $m \equiv n(\bmod (p-1))$ then $\forall k \in \mathbb{N} . k^{m} \equiv k^{n}(\bmod p)$.
(c) (i) Use Euclid's Algorithm to express the number 1 as an integer linear combination of the numbers 34 and 21.
(ii) Find a solution $x \in \mathbb{N}$ to $34 \cdot x \equiv 3(\bmod 21)$.

