COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 2

2 Digital Electronics (IJW)

(a) Show how two NOR gates may be connected to form an RS latch. Describe its operation and give a table relating its inputs to its outputs. How could you use this circuit to eliminate the effect of contact bounce in a single pole double throw switch supplying an input to a digital logic circuit?
(b) The state sequence for a particular 4-bit binary up-counter is as follows:

Q_{A}	Q_{B}	Q_{C}	Q_{D}
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
\vdots	\vdots	\vdots	\vdots
1	0	1	1
0	0	0	0
0	0	0	1
\vdots	\vdots	\vdots	\vdots

Show how four negative edge triggered T-type flip-flops (FFs) with outputs labelled Q_{A}, Q_{B}, Q_{C} and Q_{D} can be used to implement a ripple counter having the specified state sequence. Show any combinational logic necessary assuming that the FFs have asynchronous reset inputs available.
[4 marks]
(c) Using the principles of synchronous design, determine the next state combinational logic expressions required to implement a counter having the state sequence specified in part (b). Assume that D-type FFs are to be used and that unused states do not occur.
(d) Explain carefully what happens if the counter in (c) starts in state 1110 . In general, how can start-up problems be overcome in the design of synchronous state machines?
(e) What are the advantages and disadvantages of the synchronous design in part (c) compared with the alternative design in part (b)?
[2 marks]

