## COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 2

## 10 Discrete Mathematics (AMP)

(a) For each symbol $x$ in the alphabet $\Sigma=\{a, b, c\}$, let $O_{x}$ be the language over $\Sigma$ consisting of all strings that contain an odd number of occurrences of the symbol $x$; and let $E_{x}$ be the language of strings over $\Sigma$ containing an even number of occurrences of the symbol $x$.
(i) Give a deterministic finite automaton whose language of accepted strings is $O_{a}$.
(ii) Give a regular expression whose language of matching strings is $O_{a}$.
(iii) Give a deterministic finite automaton whose language of accepted strings is $O_{a} \cap E_{b}$.
(b) $\quad M=(Q, \Sigma, \delta, s, F)$ is a deterministic finite automaton whose set of states $Q$ has $\ell$ elements. Suppose that $M$ accepts a string $w \in \Sigma^{*}$ whose length $|w|$ satisfies $|w| \geq \ell$.
(i) Show that $w=u_{1} v u_{2}$ for some strings $u_{1}, v, u_{2} \in \Sigma^{*}$ such that $\left|u_{1}\right|<\ell$, $1 \leq|v| \leq \ell$ and $M$ accepts $u_{1} v^{n} u_{2}$ for all $n \in \mathbb{N}=\{0,1,2, \ldots\}$. [7 marks]
(ii) Hence show that if infinitely many strings are accepted by $M$, then it must accept some string $w^{\prime}$ with $\ell \leq\left|w^{\prime}\right|<2 \ell$.

