COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 2

1 Digital Electronics (IJW)

(a) A combinational logic circuit takes a 4-bit unsigned binary integer number at its inputs labelled D_{3}, D_{2}, D_{1} and D_{0}, where D_{3} is the most significant bit. For decimal input $1,2,3,5,7,11$ and 13 , the output S is to be at logic 1 , and it is to be at logic 0 otherwise.
(i) Write down the truth table for the required combinational logic function.
(ii) Using a Karnaugh map, determine the simplified Boolean expression for the output S in terms of the inputs D_{3} to D_{0} in a minimum sum-of-products form.
(iii) Describe what is meant by an essential term in a Karnaugh map. Write down the essential terms for the Karnaugh map in (ii).
(iv) Using a Karnaugh map, this time determine the required simplified Boolean expression for the output S in a minimum product-of-sums form.
[10 marks]
(b) Provide a circuit diagram which implements the following Boolean function using only NAND gates

$$
F=(A+\bar{D}) \cdot(B+C+\bar{D}) \cdot(A+\bar{B}+\bar{C})
$$

that has the don't care states: A.B. $\bar{C} \cdot \bar{D}, A \cdot B \cdot \bar{C} \cdot D, A \cdot B \cdot C \cdot D$ and A.B.C. \bar{D}
(c) Show that

$$
\begin{aligned}
(X+Y) \cdot(X+Z) & =X+Y \cdot Z \\
(X+Y) \cdot(\bar{X}+Z) & =X \cdot Z+\bar{X} \cdot Y
\end{aligned}
$$

Using these results or otherwise, simplify the following expression

$$
P=(A+B+\bar{C}) \cdot(A+B+D) \cdot(A+B+E) \cdot(A+\bar{D}+E) \cdot(\bar{A}+C)
$$

