COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 1

6 Numerical Methods (DJG)

(a) A lander for the planet Mars has initial mass $M_0 = m(0)$ kilograms which includes $F_0 = f(0)$ kilograms of fuel. It is released from an orbiter at time zero at height $H_0 = h(0)$ with an initial downwards velocity of zero. It must touch down at less than 1 metre per second. Its downward force is Mg (where g is constant) and this is countered by a rocket motor that is pre-programmed to generate a time-varying upwards force of u(t). The motor burns fuel at a mass rate proportional to the force it develops. This is summarised in these equations:

$$\frac{dm(t)}{dt} = -\alpha u(t) \qquad \frac{dv(t)}{dt} = \frac{u(t) - gm(t)}{m(t)} \qquad \frac{dh(t)}{dt} = v(t)$$

A discrete-time computer simulation of the landing uses time steps Δt . Using a programming language of your choice or pseudo code:

- (i) Give a suitable state vector for the system. Include setup code that suitably initialises the state vector. [1 mark]
- (ii) Give state update assignments for one time step based on simple linear projections assuming a function u(t) has been provided. [2 marks]
- (*iii*) Give code for the various stopping conditions. These include a safe landing, a fatal crash or running out of fuel. [1 mark]
- (iv) Why does a simple linear projection lead to a velocity modelling error in every time step. What determines the error magnitude and does it compound over successive steps? [3 marks]
- (b) (i) Briefly describe the bisection method (binary chop) for finding a root of an equation. Mention two possible stopping conditions. [3 marks]
 - (*ii*) Recall that the CORDIC algorithm uses successive approximation where the *i*th division of the interval is by $\arctan(2^{-i})$. Give a stopping condition for CORDIC. [2 marks]
 - (*iii*) The following approximation can be used for cosine: $\cos(x) \approx 1 \frac{x^2}{2}$. Does it accurately deliver three significant decimal digits where the argument range is 0.0 to $\pi/4$? [2 marks]
 - (*iv*) Approximately how many iterations of CORDIC are required to ensure three significant decimal digits are accurate over the same range? [6 marks]