COMPUTER SCIENCE TRIPOS Part IA - 2014 - Paper 1

6 Numerical Methods (DJG)

(a) A lander for the planet Mars has initial mass $M_{0}=m(0)$ kilograms which includes $F_{0}=f(0)$ kilograms of fuel. It is released from an orbiter at time zero at height $H_{0}=h(0)$ with an initial downwards velocity of zero. It must touch down at less than 1 metre per second. Its downward force is $M g$ (where g is constant) and this is countered by a rocket motor that is pre-programmed to generate a time-varying upwards force of $u(t)$. The motor burns fuel at a mass rate proportional to the force it develops. This is summarised in these equations:

$$
\frac{d m(t)}{d t}=-\alpha u(t) \quad \frac{d v(t)}{d t}=\frac{u(t)-g m(t)}{m(t)} \quad \frac{d h(t)}{d t}=v(t)
$$

A discrete-time computer simulation of the landing uses time steps Δt. Using a programming language of your choice or pseudo code:
(i) Give a suitable state vector for the system. Include setup code that suitably initialises the state vector.
(ii) Give state update assignments for one time step based on simple linear projections assuming a function $u(t)$ has been provided.
(iii) Give code for the various stopping conditions. These include a safe landing, a fatal crash or running out of fuel.
(iv) Why does a simple linear projection lead to a velocity modelling error in every time step. What determines the error magnitude and does it compound over successive steps?
[3 marks]
(b) (i) Briefly describe the bisection method (binary chop) for finding a root of an equation. Mention two possible stopping conditions.
[3 marks]
(ii) Recall that the CORDIC algorithm uses successive approximation where the i th division of the interval is by $\arctan \left(2^{-i}\right)$. Give a stopping condition for CORDIC.
(iii) The following approximation can be used for cosine: $\cos (x) \approx 1-\frac{x^{2}}{2}$. Does it accurately deliver three significant decimal digits where the argument range is 0.0 to $\pi / 4$?
(iv) Approximately how many iterations of CORDIC are required to ensure three significant decimal digits are accurate over the same range? [6 marks]

