COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 9

6 Information Theory and Coding (JGD)

(a) Two random variables X and Y are correlated. The marginal probabilities $p(X)$ and $p(Y)$ are known, as is their joint probability $p(X, Y)$. Give an expression for the conditional probability $p(X \mid Y)$ using the known quantities. Then, using $p(X), p(Y)$, and $p(X \mid Y)$, give an expression for the information gained, in bits, from observing Y after X was already observed.
(b) Let the random variable X be five possible symbols $\{\alpha, \beta, \gamma, \delta, \epsilon\}$. Consider two probability distributions $p(x)$ and $q(x)$ over these symbols, and two possible coding schemes $C_{1}(x)$ and $C_{2}(x)$ for this random variable:

Symbol	$p(x)$	$q(x)$	$C_{1}(x)$	$C_{2}(x)$
α	$1 / 2$	$1 / 2$	0	0
β	$1 / 4$	$1 / 8$	10	100
γ	$1 / 8$	$1 / 8$	110	101
δ	$1 / 16$	$1 / 8$	1110	110
ϵ	$1 / 16$	$1 / 8$	1111	111

(i) Calculate $H(p), H(q)$, and relative entropies (Kullback-Leibler distances) $D(p \| q)$ and $D(q \| p)$.
[4 marks]
(ii) Show that the average codeword length of C_{1} under p is equal to $H(p)$, and thus C_{1} is optimal for p. Show that C_{2} is optimal for q.
[2 marks]
(iii) Now assume that we use code C_{2} when the distribution is p. What is the average length of the codewords? By how much does it exceed the entropy $H(p)$? Relate your answer to $D(p \| q)$.
[2 marks]
(iv) If we use code C_{1} when the distribution is q, by how much does the average codeword length exceed $H(q)$? Relate your answer to $D(q \| p)$. [2 marks]
(c) Compare and contrast the compression strategies deployed in the JPEG and JPEG-2000 protocols. Include these topics: the underlying transforms used; their computational efficiency and ease of implementation; artefacts introduced in lossy mode; typical compression factors; and their relative performance when used to achieve severe compression rates.
(d) Discuss the following concepts in Kolmogorov's theory of pattern complexity: how writing a program that generates a pattern is a way of compressing it, and executing such a program decompresses it; fractals; patterns that are their own shortest possible description; and Kolmogorov incompressibility. [3 marks]

