COMPUTER SCIENCE TRIPOS Part II – 2013 – Paper 9

2 Computer Systems Modelling (RJG)

- (a) Define a Poisson process of rate $\lambda > 0$. [3 marks]
- (b) Show that the number of events, N(t), of a Poisson process that occur in the fixed time interval [0, t] is a random variable that has a Poisson distribution with parameter λt . [3 marks]
- (c) Show that the inter-event times of a Poisson process form a sequence of independent random variables each distributed with an exponential distribution with parameter λ . [3 marks]
- (d) Describe how to use the inverse transform method to simulate exponential random variables with parameter λ . [3 marks]
- (e) Show how your simulated exponential random variables can be used to simulate Poisson random variables with parameter λ . [3 marks]
- (f) Consider positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ and weight factors $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $\alpha_i \ge 0$ for $i = 1, 2, \ldots, n$ and $\sum_{i=1}^n \alpha_i = 1$. Show that

$$f(x) = \begin{cases} \sum_{i=1}^{n} \alpha_i \lambda_i e^{-\lambda_i x} & x > 0\\ 0 & x \le 0 \end{cases}$$

is a density for a random variable and describe a procedure to simulate values from this density. [5 marks]