COMPUTER SCIENCE TRIPOS Part II – 2013 – Paper 9

13 Topics in Concurrency (GW)

This question is on HOPLA and PCCS, a variant of pure CCS in which any output on a channel persists. Let A be a set of channel names ranged over by a, b, c and let \overline{A} be the set of complemented channel names, $\overline{A} = \{\overline{a} \mid a \in A\}$. The set of labels $L = A \cup \overline{A}$ is ranged over by l, to which we extend complementation by taking $\overline{\overline{l}} = l$. Use α to range over $L \cup \{\tau\}$, where τ is a distinct label. The terms of PCCS follow the grammar $P ::= \mathbf{nil} \mid \overline{a} \mid a.P \mid (P_1 \mid \mid P_2)$. The operational semantics of PCCS is:

$$\frac{1}{\bar{a} \stackrel{\bar{a}}{\rightarrow} \bar{a}} \quad \frac{1}{a \cdot P \stackrel{a}{\rightarrow} P} \quad \frac{P_1 \stackrel{\alpha}{\rightarrow} P_1'}{P_1 \parallel P_2 \stackrel{\alpha}{\rightarrow} P_1' \parallel P_2} \quad \frac{P_2 \stackrel{\alpha}{\rightarrow} P_2'}{P_1 \parallel P_2 \stackrel{\alpha}{\rightarrow} P_1 \parallel P_2'} \quad \frac{P_1 \stackrel{l}{\rightarrow} P_1' \quad P_2 \stackrel{\bar{l}}{\rightarrow} P_2'}{P_1 \parallel P_2 \stackrel{\tau}{\rightarrow} P_1' \parallel P_2'}$$

- (a) Draw the transition system of the PCCS term $\bar{a} \parallel a.a.\bar{b}$. [3 marks]
- (b) This part of the question is on HOPLA. For reference, the operational semantics of HOPLA is presented at the end of the question.
 - (i) For u of sum type, let $[u > a.x \Rightarrow t]$ abbreviate $[\pi_a(u) > .x \Rightarrow t]$. Derive a rule for the transitions of $[u > a.x \Rightarrow t]$. [2 marks]
 - (*ii*) Show that $[a.u > a.x \Rightarrow t] \sim t[u/x]$ and $[a.u > b.x \Rightarrow t] \sim nil$ if $a \neq b$, where nil represents the empty sum and \sim is the bisimilarity of HOPLA. [4 marks]
- (c) Write down a HOPLA term realising the parallel composition of PCCS. Use this to give an encoding of PCCS into HOPLA, specifying a HOPLA term $\llbracket P \rrbracket$ for every PCCS term *P*. [*Hint:* The realisation of parallel composition should be the same as that of the encoding of pure CCS into HOPLA.] [5 marks]
- (d) Use the rules of HOPLA to show how a derivation establishing $\llbracket P_1 \parallel P_2 \rrbracket \xrightarrow{\alpha} \\ \llbracket P'_1 \parallel P_2 \rrbracket$ can be constructed from a derivation of $\llbracket P_1 \rrbracket \xrightarrow{\alpha} \\ \llbracket P'_1 \rrbracket$.

Explain briefly how you would show that if $P \xrightarrow{\alpha} P'$ in PCCS then $\llbracket P \rrbracket \xrightarrow{\alpha} \llbracket P' \rrbracket$ in HOPLA. In what part of the proof would the derivation that you have constructed be useful?

[6 marks]

Subject to suitable typings, HOPLA has transitions $t \xrightarrow{p} t'$ between closed terms t, t' and action p given by the following rules:

$$\frac{t[\operatorname{rec} x t/x] \xrightarrow{p} t'}{\operatorname{rec} x t \xrightarrow{p} t'} \qquad \frac{t_j \xrightarrow{p} t'}{\sum_{i \in I} t_i \xrightarrow{p} t'} (j \in I) \qquad \frac{u \xrightarrow{} u' \quad t[u'/x] \xrightarrow{p} t'}{[u > .x \Rightarrow t] \xrightarrow{p} t'}$$

$$\frac{t[u/x] \xrightarrow{p} t'}{\lambda x t \xrightarrow{u \mapsto p} t'} \qquad \frac{t \xrightarrow{u \mapsto p} t'}{t \ u \xrightarrow{p} t'} \qquad \frac{t \xrightarrow{p} t'}{a \ t \xrightarrow{ap} t'} \qquad \frac{t \xrightarrow{ap} t'}{\pi_a(t) \xrightarrow{p} t'}$$