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COMPUTER SCIENCE TRIPOS Part II – 2013 – Paper 9

Topics in Concurrency (GW)

This question is on HOPLA and PCCS, a variant of pure CCS in which any output
on a channel persists. Let A be a set of channel names ranged over by a, b, c and let
Ā be the set of complemented channel names, Ā = {ā | a ∈ A}. The set of labels

L = A∪ Ā is ranged over by l, to which we extend complementation by taking ¯̄l = l.
Use α to range over L ∪ {τ}, where τ is a distinct label. The terms of PCCS follow
the grammar P ::= nil | ā | a.P | (P1 ‖ P2). The operational semantics of PCCS is:
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(a) Draw the transition system of the PCCS term ā ‖ a.a.b̄ . [3 marks]

(b) This part of the question is on HOPLA. For reference, the operational semantics
of HOPLA is presented at the end of the question.

(i) For u of sum type, let [u > a.x⇒ t] abbreviate [πa(u) > .x⇒ t]. Derive a
rule for the transitions of [u > a.x⇒ t]. [2 marks]

(ii) Show that [a.u > a.x ⇒ t] ∼ t[u/x] and [a.u > b.x ⇒ t] ∼ nil if a 6= b,
where nil represents the empty sum and ∼ is the bisimilarity of HOPLA.

[4 marks]

(c) Write down a HOPLA term realising the parallel composition of PCCS. Use this
to give an encoding of PCCS into HOPLA, specifying a HOPLA term JP K for
every PCCS term P . [Hint: The realisation of parallel composition should be
the same as that of the encoding of pure CCS into HOPLA.] [5 marks]

(d) Use the rules of HOPLA to show how a derivation establishing JP1 ‖ P2K
α.−→

JP ′
1 ‖ P2K can be constructed from a derivation of JP1K

α.−→ JP ′
1K.

Explain briefly how you would show that if P
α−→ P ′ in PCCS then JP K α−→ JP ′K

in HOPLA. In what part of the proof would the derivation that you have
constructed be useful?

[6 marks]

Subject to suitable typings, HOPLA has transitions t
p−→ t′ between closed terms t, t′

and action p given by the following rules:
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