COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 9

13 Topics in Concurrency (GW)

This question is on HOPLA and PCCS, a variant of pure CCS in which any output on a channel persists. Let A be a set of channel names ranged over by a, b, c and let \bar{A} be the set of complemented channel names, $\bar{A}=\{\bar{a} \mid a \in A\}$. The set of labels $L=A \cup \bar{A}$ is ranged over by l, to which we extend complementation by taking $\overline{\bar{l}}=l$. Use α to range over $L \cup\{\tau\}$, where τ is a distinct label. The terms of PCCS follow the grammar $P::=\operatorname{nil}|\bar{a}| a . P \mid\left(P_{1} \| P_{2}\right)$. The operational semantics of PCCS is:

$$
\overline{\bar{a} \xrightarrow{\bar{a}} \bar{a}} \frac{P_{1} \xrightarrow{\alpha} P_{1}^{\prime}}{a \cdot P \xrightarrow{a} P} \frac{P_{2} \xrightarrow{\alpha} P_{2}^{\prime}}{P_{1}\left\|P_{2} \xrightarrow{\alpha} P_{1}^{\prime}\right\| P_{2}} \quad \frac{P_{1} \xrightarrow{l} P_{1}^{\prime} P_{2} \xrightarrow{\bar{c}} P_{2}^{\prime}}{P_{1}\left\|P_{2} \xrightarrow{\alpha} P_{1}\right\| P_{2}^{\prime}} \quad \frac{P_{1}\left\|P_{2} \xrightarrow{\tau} P_{1}^{\prime}\right\| P_{2}^{\prime}}{}
$$

(a) Draw the transition system of the PCCS term $\bar{a} \| a \cdot a \cdot \bar{b}$.
(b) This part of the question is on HOPLA. For reference, the operational semantics of HOPLA is presented at the end of the question.
(i) For u of sum type, let $[u>a . x \Rightarrow t]$ abbreviate $\left[\pi_{a}(u)>. x \Rightarrow t\right]$. Derive a rule for the transitions of $[u>a \cdot x \Rightarrow t]$.
[2 marks]
(ii) Show that $[a . u>a . x \Rightarrow t] \sim t[u / x]$ and $[a . u>b . x \Rightarrow t] \sim$ nil if $a \neq b$, where nil represents the empty sum and \sim is the bisimilarity of HOPLA.
[4 marks]
(c) Write down a HOPLA term realising the parallel composition of PCCS. Use this to give an encoding of PCCS into HOPLA, specifying a HOPLA term $\llbracket P \rrbracket$ for every PCCS term P. [Hint: The realisation of parallel composition should be the same as that of the encoding of pure CCS into HOPLA.] [5 marks]
(d) Use the rules of HOPLA to show how a derivation establishing $\llbracket P_{1} \| P_{2} \rrbracket \xrightarrow{\alpha}$ $\llbracket P_{1}^{\prime} \| P_{2} \rrbracket$ can be constructed from a derivation of $\llbracket P_{1} \rrbracket \xrightarrow{\alpha,} \llbracket P_{1}^{\prime} \rrbracket$.

Explain briefly how you would show that if $P \xrightarrow{\alpha} P^{\prime}$ in PCCS then $\llbracket P \rrbracket \xrightarrow{\alpha} \llbracket P^{\prime} \rrbracket$ in HOPLA. In what part of the proof would the derivation that you have constructed be useful?
[6 marks]
Subject to suitable typings, HOPLA has transitions $t \xrightarrow{p} t^{\prime}$ between closed terms t, t^{\prime} and action p given by the following rules:

$$
\frac{t[r e c x t / x] \xrightarrow{p} t^{\prime}}{r e c x t \xrightarrow[\rightarrow]{p} t^{\prime}} \quad \frac{t_{j} \xrightarrow[\rightarrow]{p} t^{\prime}}{\sum_{i \in I} t_{i} \xrightarrow[\rightarrow]{p} t^{\prime}}(j \in I) \quad \overline{. t \rightarrow t} \quad \frac{u \rightarrow u^{\prime} \quad t\left[u^{\prime} / x\right] \xrightarrow{p} t^{\prime}}{[u>x \Rightarrow t] \xrightarrow{p} t^{\prime}}
$$

$$
\frac{t[u / x] \xrightarrow{p} t^{\prime}}{\lambda x t \xrightarrow{u \mapsto p} t^{\prime}} \quad \frac{t \xrightarrow{u \mapsto p} t^{\prime}}{t u \xrightarrow{p} t^{\prime}} \quad \frac{t \xrightarrow{p} t^{\prime}}{a t \xrightarrow{a p} t^{\prime}} \quad \frac{t \xrightarrow{a p} t^{\prime}}{\pi_{a}(t) \xrightarrow{p} t^{\prime}}
$$

