COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 8

6 Digital Signal Processing (MGK)

Consider the discrete system

$$
y_{n}=\sum_{i=0}^{\infty} x_{n-2 i} \cdot\left(-\frac{1}{2}\right)^{i}
$$

(a) Write down the first 8 samples of the impulse response of this filter. [2 marks]
(b) Provide the finite-difference equation of an equivalent recursive filter that can be implemented with not more than two delay elements.
(c) What is the z-transform $H(z)$ of the impulse response of this filter?
(d) Where are the zeros and poles of $H(z)$?
(e) We now operate this discrete system at sampling frequency $f_{\mathrm{s}}=1 \mathrm{MHz}$ and feed it with input $x_{n}=\cos \left(2 \pi f n / f_{\mathrm{s}}\right)$. For which f (with $0 \leq f \leq f_{\mathrm{s}} / 2$) will the peak amplitude of the output sequence $\left\{y_{n}\right\}$ be largest, and how large will it be?

