COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 8

5 Computer Vision (JGD)

(a) Consider the following 2D filter function $f(x, y)$ incorporating the Laplacian operator that is often used in computer vision:

$$
f(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) e^{-\left(x^{2}+y^{2}\right) / \sigma^{2}}
$$

(i) In 2D Fourier terms, what type of filter is this? Is it a lowpass, a highpass, or a bandpass filter? Justify your answer.
(ii) Are different orientations of image structure treated differently by this filter, and if so, how? Is it isotropic, or anisotropic?
[2 marks]
(iii) Approximately what is the spatial frequency bandwidth of this filter, in octaves? [Hint: the answer is independent of σ.]
[2 marks]
(iv) What is meant by image operations "at a certain scale of analysis?" Explain the scale parameter σ, and define a scale-space fingerprint.
(b) Write a block of pseudo-code for convolving an image with a feature-detecting kernel. (You may ignore out-of-bounds issues at the image array boundaries.)
[3 marks]
(c) In pattern classification with two classes, explain how an ROC curve is derived from the underlying distributions. Define a threshold-independent performance metric based on the distributions' moments.
[4 marks]
(d) When visually inferring a 3D representation of a face, it is useful to extract separately both a shape model, and a texture model. Explain the purposes of these steps, their use in morphable models for pose-invariant face recognition, and how the shape and texture models are extracted and later re-combined.
[5 marks]

