COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 7

9 Information Theory and Coding (JGD)

(a) Consider an alphabet of 5 symbols whose probabilities are as follows:

A	B	C	D	E
$\frac{1}{16}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{2}$

One of these symbols has been selected at random and you need to discover which symbol it is by asking 'yes/no' questions that will be truthfully answered.
(i) What would be the most efficient sequence of such questions that you could ask in order to discover the selected symbol?
[2 marks]
(ii) By what principle can you claim that each of your proposed questions in the sequence is maximally informative?
[2 marks]
(iii) On average, how many such questions will need to be asked before the symbol is discovered? What is the entropy of the symbol set? [2 marks]
(iv) Construct a uniquely decodable prefix code for the symbols. Explain why it is uniquely decodable and why it has the prefix property. [2 marks]
(v) Relate the bits in the code words forming your prefix code to the 'yes/no' questions that you proposed in (i).
[2 marks]
(b) Explain how the bits in an IrisCode are set by phase sequencing. Discuss how quantisation of the complex plane into phase quadrants sets each pair of bits; why it is beneficial for quadrant codes to form a Gray Code; how much entropy is thereby typically extracted from iris images; and why such bit sequences enable extremely efficient identity searches and matching.
(c) Consider a noisy analog communication channel of bandwidth $\omega=1 \mathrm{MHz}$, which is perturbed by additive white Gaussian noise whose total spectral power is $N_{0} \omega=1$. Continuous signals are transmitted across such a channel, with average transmitted power $P=1,000$. Give a numerical estimate for the channel capacity, in bits per second, of this noisy channel. Then, for a channel having the same bandwidth ω but whose signal-to-noise ratio $\frac{P}{N_{0} \omega}$ is four times better, repeat your numerical estimate of capacity in bits per second.
[5 marks]

