
11

COMPUTER SCIENCE TRIPOS Part II – 2013 – Paper 7

Optimising Compilers (AM)

(a) Give a semantic notion of a variable being live at a program point, explaining
why this is problematic to calculate. Now give a simpler-to-calculate notion of
liveness and explain how it relates to the semantic notion. Formulate dataflow
equations whose solution(s) give the liveness at each program point. You need
only consider liveness of simple non-address-taken variables. [4 marks]

(b) Suppose we have a basic block of p simple statements. Give a formula relating
the liveness on entry to the block to those of its q neighbouring blocks in the
control flow graph. This formula naturally uses O(p) +O(q) operations – justify
this statement. It is claimed that this formula can be re-arranged to require only
O(q) time to calculate by only using one ‘∪’ and one ‘\’ operator. Determine
whether this is true. [Hint: you may wish to consider examples, and to start
by solving the case p = 2. Partial credit will be given for a good set of concrete
examples arguing for or against.] [5 marks]

(c) To solve the dataflow equations, an initial approximation to liveness at the start
of each basic block is required. What is it, and indicate why this leads to a
preferable solution. [2 marks]

(d) Solving dataflow equations is usually expressed iteratively, where each iteration
is of the form “for every basic block re-calculate the set of live variables from
the current sets of live variables of its neighbours”. We want to determine
whether some basic-block orderings in “for every basic block” result in fewer
overall iterations than others. Suppose the program has k basic blocks, but no
cycle in the control flow graph; give an optimal ordering which only requires one
dataflow iteration to calculate liveness (a second would only calculate the same
value of the first). Also give such a program and an ordering which maximises
the number of iterations required, giving the number of iterations in terms of k.

[5 marks]

(e) Consider the program with four labelled blocks (with B1 as entry node):

B1: x = read(); y = read(); z = read(); goto B2;

B2: z = z+1; x = x-1; if (x>0) goto B3; else goto B4;

B3: z = z+1; y = y-1; if (y>0) goto B2; else goto B4;

B4: print(z);

Show (i) there is no basic block ordering for which a single iteration gives the
correct liveness at each label, but (ii) there is an ordering for which two iterations
suffice (in the sense that a third would agree with the second). Give your ordering
both explicitly as a permutation of {B1, B2, B3, B4} and also as a general principle
along the lines of your answer to part (d). [4 marks]

1


