COMPUTER SCIENCE TRIPOS Part II - 2013 - Paper 7

1 Advanced Graphics (NAD)

(a) A general piecewise curve definition, whether Bézier, B-spline, or NURBS, can be written as a sum of products of basis functions, $A_{i}(t)$, and control points, \mathbf{P}_{i} :

$$
\mathbf{P}(t)=\sum A_{i}(t) \mathbf{P}_{i}, t_{\min } \leq t<t_{\max }
$$

Give the conditions on the functions A_{i} that are needed to ensure that:
(i) Translation of all of the points by some vector, $\mathbf{P}_{i}^{\prime}=\mathbf{P}_{i}+\Delta \mathbf{P}$, causes a translation of the curve by the same vector, $\mathbf{P}^{\prime}(t)=\mathbf{P}(t)+\Delta \mathbf{P} . \quad[2$ marks $]$
(ii) The curve lies within the convex hull of the control points.
(iii) The curve passes through one of the control points, \mathbf{P}_{j}.
(b) The knot vector $[0,0,0,1,1,1]$ defines a quadratic B-spline with three control points. Derive the equations of and graph the three basis functions from this knot vector.
(c) The basis functions derived in part (b) can be used, in a NURBS curve, to reproduce exactly a quarter-circle. Recall that a NURBS curve can be written as:

$$
\mathbf{P}(t)=\frac{\sum_{i=1}^{n+1} N_{i, k}(t) \mathbf{P}_{i} h_{i}}{\sum_{i=1}^{n+1} N_{i, k}(t) h_{i}}, t_{\min } \leq t<t_{\max }
$$

where h_{i} is the homogeneous co-ordinate associated with point \mathbf{P}_{i}. Place the three control points at $\mathbf{P}_{1}=(1,0), \mathbf{P}_{2}=(1,1), \mathbf{P}_{3}=(0,1)$.
(i) Sketch the NURBS curve for the case $h_{1}=h_{2}=h_{3}=1$
(ii) Calculate the magnitude of the maximum error between the curve in $(c)(i)$ and a perfect circle of radius 1 centred at $(0,0)$.
(iii) Sketch the NURBS curve for the case $h_{1}=h_{3}=1, h_{2}=0$.
(iv) Sketch the NURBS curve for the limit case $h_{1}=h_{3}=1, h_{2} \rightarrow \infty$.
(v) Derive the value for h_{2} that makes the NURBS curve perfectly match a quarter circle of radius 1 centred at $(0,0)$.
[3 marks]

