COMPUTER SCIENCE TRIPOS Part Ib - 2013 - Paper 6

8 Mathematical Methods for Computer Science (RJG)

(a) Given a random variable, X, with mean μ, variance σ^{2} and a constant $c \geq 0$ prove Chebyshev's inequality in the form

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\sigma^{2}}{c^{2}}
$$

(b) Suppose now that X is a random variable taking values in the interval $[a, b]$ with a mean μ and a variance σ^{2}. Define the function $f(\alpha)=\mathbb{E}\left((X-\alpha)^{2}\right)$ for $\alpha \in \mathbb{R}$ and show that $f(\alpha)$ is minimized by the choice $\alpha=\mu$. Show that

$$
f\left(\frac{a+b}{2}\right)=\mathbb{E}((X-a)(X-b))+\frac{(b-a)^{2}}{4}
$$

and hence that $\operatorname{Var}(X) \leq(b-a)^{2} / 4$. In the case that X is a Bernoulli random variable show that $\operatorname{Var}(X) \leq 1 / 4$.
(c) Let p be the fraction of computers that are running normally on some network and $1-p$ the fraction that need rebooting. Suppose that you test n of the computers choosing independently and without replacement. Let X_{i} be the Bernoulli random variable recording the result of the i th test for $i=1, \ldots, n$. Write $P_{n}=\sum_{i=1}^{n} X_{i} / n$ for the proportion of computers in your sample that were found to be running normally and show that

$$
\mathbb{P}\left(\left|P_{n}-p\right| \geq \epsilon\right) \leq \frac{p(1-p)}{n \epsilon^{2}}
$$

if p is known. However, if p is unknown show that

$$
\mathbb{P}\left(\left|P_{n}-p\right| \geq \epsilon\right) \leq \frac{1}{4 n \epsilon^{2}}
$$

(d) Now suppose that you wish to determine the least sample size n such that

$$
\mathbb{P}\left(\left|P_{n}-p\right| \geq \epsilon\right) \leq \delta
$$

for given choices of ϵ and δ. What happens to the value of n as recommended by the Chebyshev inequality in part (c) in each of the following two cases?
(i) the value of ϵ is halved
(ii) the probability δ is halved

