COMPUTER SCIENCE TRIPOS Part IB – 2013 – Paper 6

4 Computation Theory (AMP)

(a) (i) What does it mean for a λ -term to be a β -normal form? Defining the sets of canonical (C) and neutral (U) λ -terms by the grammar

$$C ::= \lambda x. C \mid U$$
$$U ::= x \mid U C$$

show that a λ -term is a β -normal form if and only if it is canonical. [5 marks]

(*ii*) Carefully stating any standard properties of β -reduction, explain why a λ -term reduces to at most one β -normal form (up to α -equivalence).

[4 marks]

- (*iii*) Give an example of a λ -term that does not reduce to any β -normal form. [2 marks]
- (b) (i) Define what it means for a closed λ -term F to represent a partial function $f \in \mathbb{N} \rightarrow \mathbb{N}$. [4 marks]
 - (*ii*) The composition of partial functions $f, g \in \mathbb{N} \to \mathbb{N}$ is the partial function $g \circ f = \{(x, z) \mid (\exists y) \ (x, y) \in f \land (y, z) \in g\} \in \mathbb{N} \to \mathbb{N}$. Suppose F represents f, G represents g, and f and g are totally defined. Show that $\lambda x. G(Fx)$ represents $g \circ f$. [2 marks]
 - (*iii*) Give an example to show that $\lambda x. G(Fx)$ need not represent $g \circ f$ when f and g are not totally defined. [3 marks]