COMPUTER SCIENCE TRIPOS Part IB - 2013 - Paper 6

2 Complexity Theory (AD)

(a) State what it means for a graph $G=(V, E)$ to be 3-colourable.
(b) What is known about the complexity of deciding whether a given graph G is 3 -colourable?
(c) Given a graph $G=(V, E)$ and a partial function $\chi: V \hookrightarrow\{1,2,3\}$, we define the graph G^{\prime} by the following actions on G :

- for each pair $u, v \in V$ such that $\chi(u)$ and $\chi(v)$ are both defined and $\chi(u) \neq \chi(v)$, add an edge (u, v) to the graph; and
- for each pair $u, v \in V$ such that $\chi(u)$ and $\chi(v)$ are both defined and $\chi(u)=\chi(v)$, add new vertices w_{1} and w_{2} to the graph, along with the edges $\left(w_{1}, w_{2}\right),\left(u, w_{1}\right),\left(u, w_{2}\right),\left(v, w_{1}\right)$ and $\left(v, w_{2}\right)$.

Prove that G^{\prime} as constructed above is 3 -colourable if, and only if, there is a valid 3-colouring of G that extends the partial function χ.
(d) Assume $\mathbf{P}=\mathrm{NP}$. Using this assumption and the construction in (c), describe a polynomial-time algorithm A which does the following:
A takes as input a graph G. If G is not 3 -colourable, A returns "no". If G is 3-colourable, A returns a valid 3 -colouring of G.

