COMPUTER SCIENCE TRIPOS Part IB – 2013 – Paper 6

2 Complexity Theory (AD)

- (a) State what it means for a graph G = (V, E) to be 3-colourable. [2 marks]
- (b) What is known about the complexity of deciding whether a given graph G is 3-colourable? [2 marks]
- (c) Given a graph G = (V, E) and a *partial* function $\chi : V \hookrightarrow \{1, 2, 3\}$, we define the graph G' by the following actions on G:
 - for each pair $u, v \in V$ such that $\chi(u)$ and $\chi(v)$ are both defined and $\chi(u) \neq \chi(v)$, add an edge (u, v) to the graph; and
 - for each pair $u, v \in V$ such that $\chi(u)$ and $\chi(v)$ are both defined and $\chi(u) = \chi(v)$, add new vertices w_1 and w_2 to the graph, along with the edges $(w_1, w_2), (u, w_1), (u, w_2), (v, w_1)$ and (v, w_2) .

Prove that G' as constructed above is 3-colourable if, and only if, there is a valid 3-colouring of G that extends the partial function χ . [6 marks]

(d) Assume P = NP. Using this assumption and the construction in (c), describe a polynomial-time algorithm A which does the following:

A takes as input a graph G. If G is not 3-colourable, A returns "no". If G is 3-colourable, A returns a valid 3-colouring of G.

[10 marks]