COMPUTER SCIENCE TRIPOS Part IB - 2013 - Paper 6

10 Semantics of Programming Languages (SS)

This question is about a variation on a fragment of the L2 language in which functions take two arguments. The language has the following expressions:

$$
e::=x\left|\mathrm{fn}\left(x_{1}, x_{2}\right) \Rightarrow e\right| e_{0}\left(e_{1}, e_{2}\right) \mid n
$$

where x ranges over variables and n ranges over integers. As usual, $\mathrm{fn}(x, y) \Rightarrow e$ is binding: we work up-to α-equivalence and require that x and y are different.
(a) Write down a call-by-name operational semantics for this language.
(b) Consider the following type system. The types are

$$
T::=\text { int } \mid \text { ret } \mid\left(T_{1}, T_{2}\right) \rightarrow \text { ret }
$$

A context Γ is a finite partial function from variables to types. The type system is given by the following rules:

$$
\begin{aligned}
& \frac{-}{\Gamma, x: T, \Gamma^{\prime} \vdash x: T} \quad \frac{\Gamma \vdash e_{0}:\left(T_{1}, T_{2}\right) \rightarrow \mathrm{ret} \quad \Gamma \vdash e_{1}: T_{1} \quad \Gamma \vdash e_{2}: T_{2}}{\Gamma \vdash e_{0}\left(e_{1}, e_{2}\right): \mathrm{ret}} \\
& \frac{-}{\Gamma \vdash n: \text { int }}(n \text { is an integer }) \quad \frac{\Gamma, x_{1}: T_{1}, x_{2}: T_{2} \vdash e: \text { ret }}{\Gamma \vdash \mathrm{fn}\left(x_{1}, x_{2}\right) \Rightarrow e:\left(T_{1}, T_{2}\right) \rightarrow \mathrm{ret}}
\end{aligned}
$$

(The idea is that $\left(T_{1}, T_{2}\right) \rightarrow$ ret is a type of functions taking arguments of type T_{1} and T_{2}. However, there are no expressions of type ret in the empty context, and so rather than returning a result you pass it to a 'continuation'.)
(i) Find a type T for which $\vdash \mathrm{fn}(x, k) \Rightarrow k(3, x): T$, giving a derivation.
(ii) Give a derivation of the following judgement:

$$
k:(\text { int, ret }) \rightarrow \mathrm{ret} \vdash \mathrm{fn}(x, l) \Rightarrow l(7, k):(\text { int, }(\mathrm{int},(\mathrm{int}, \text { ret }) \rightarrow \mathrm{ret}) \rightarrow \mathrm{ret}) \rightarrow \mathrm{ret}
$$

(c) Prove the following 'progress' theorem for this language:

If $\vdash e: T$ then either $e=\left(\mathrm{fn}(x, y) \Rightarrow e^{\prime}\right)$, or e is an integer, or there is e^{\prime} such that $e \longrightarrow e^{\prime}$.
(d) We now consider the situation where there is a type posint of positive integers which is a subtype of int.
Define a subtyping relation $<$: and extend the type system to accommodate it. Demonstrate it by giving a derivation of the following judgement:

$$
k:(\text { int }, \text { ret }) \rightarrow \operatorname{ret} \vdash \mathrm{fn}(x, l) \Rightarrow l(7, k):(\text { int },(\text { int },(\text { posint, ret }) \rightarrow \text { ret }) \rightarrow \text { ret }) \rightarrow \text { ret }
$$

