COMPUTER SCIENCE TRIPOS Part Ib - 2013 - Paper 5

2 Computer Design (SWM)

The version of Thacker's Tiny Computer 3 (TTC3) that was used in the 2012 ECAD Laboratory sessions (instruction set summary is below) has the following pipeline stages:

fetch	decode/register fetch	execute/memory access	write-back

Currently the implementation only supports one instruction in the pipeline at a time, i.e. the next instruction is only fetched when the current one finishes in the write-back stage.

If the implementation were to attempt to fetch a new instruction every clock cycle, explain the following microarchitectural issues:
(a) What data hazards would exist and how can they be resolved whilst preserving the programmer's sequential model?
(b) What are control hazards and how can we avoid exposing them to the programmer?
[5 marks]
(c) When are branch target addresses computed on the TTC3 and how many bubbles will be introduced when taking a jump? Assume that such a tiny computer would not have a branch predictor.
[5 marks]
(d) On the TTC3, every instruction (except jump) can conditionally skip the next instruction. How might skip be implemented and how many pipeline bubbles need to be introduced?

TTC3 Instruction Set Summary

LC=load constant (bits 23:0 of the instruction), no skip
PC=program counter
$A L U=$ Function $(R a, R b)$, where the Function is specified by the Func bits
$F(R a, R b)=$ rotate(Shift, ALU), where the rotation is specified by the Shift bits

