
2

COMPUTER SCIENCE TRIPOS Part IB – 2013 – Paper 5

Computer Design (SWM)

The version of Thacker’s Tiny Computer 3 (TTC3) that was used in the 2012 ECAD
Laboratory sessions (instruction set summary is below) has the following pipeline
stages:

fetch decode/register
fetch

execute/memory
access

write-back

Currently the implementation only supports one instruction in the pipeline at a time,
i.e. the next instruction is only fetched when the current one finishes in the write-back
stage.

If the implementation were to attempt to fetch a new instruction every clock cycle,
explain the following microarchitectural issues:

(a) What data hazards would exist and how can they be resolved whilst preserving
the programmer’s sequential model? [5 marks]

(b) What are control hazards and how can we avoid exposing them to the
programmer? [5 marks]

(c) When are branch target addresses computed on the TTC3 and how many
bubbles will be introduced when taking a jump? Assume that such a tiny
computer would not have a branch predictor. [5 marks]

(d) On the TTC3, every instruction (except jump) can conditionally skip the next
instruction. How might skip be implemented and how many pipeline bubbles
need to be introduced? [5 marks]

TTC3 Instruction Set Summary

03571017242531

Rw RaLC Rb Func Shift Skip Opcode

Function:
 0: A+B
 1: A-B
 2: B+1
 3: B-1
 4: A & B
 5: A | B
 6: A ^ B
 7: reserved

Shift (rotates right):
 0: no shift
 1: RCY 1
 2: RCY 8
 3: RCY16

Skip:
 0: never
 1: ALU<0
 2: ALU=0
 3: InRdy

Opcode:
 0: normal: Rw=F(Ra,Fb), skip if condition
 1: storeDM: DM[Rb]=Ra, Rw=F(Ra,Rb), skip if condition
 2: storeIM: IM[Rb]=Ra, Rw=F(Ra,Rb), skip if condition
 3: out: OutStrobe, Rw=F(Ra,Rb), skip if condition
 4: loadDM: Rw=DM[Rb], ALU=F(Ra,Rb), skip if condition
 5: in: Rw=in_data, ALU=F(Ra,Rb), skip if condition
 6: jump: Rw=PC+1, PC=F(Ra,Rb), no skip
 7: reserved

LC=load constant (bits 23:0 of the instruction), no skip
PC=program counter
ALU=Function(Ra,Rb), where the Function is specified by the Func bits
F(Ra,Rb)=rotate(Shift, ALU), where the rotation is specified by the Shift bits

1

