COMPUTER SCIENCE TRIPOS Part IB – 2013 – Paper 5

2 Computer Design (SWM)

The version of Thacker's Tiny Computer 3 (TTC3) that was used in the 2012 ECAD Laboratory sessions (instruction set summary is below) has the following pipeline stages:

fetch	decode/register	execute/memory	write-back
	fetch	access	

Currently the implementation only supports one instruction in the pipeline at a time, i.e. the next instruction is only fetched when the current one finishes in the write-back stage.

If the implementation were to attempt to fetch a new instruction every clock cycle, explain the following microarchitectural issues:

- (a) What data hazards would exist and how can they be resolved whilst preserving the programmer's sequential model? [5 marks]
- (b) What are control hazards and how can we avoid exposing them to the programmer? [5 marks]
- (c) When are branch target addresses computed on the TTC3 and how many bubbles will be introduced when taking a jump? Assume that such a tiny computer would not have a branch predictor. [5 marks]
- (d) On the TTC3, every instruction (except jump) can conditionally skip the next instruction. How might skip be implemented and how many pipeline bubbles need to be introduced? [5 marks]

Rw			Ra 	Rb	Func	Shift	Skip	Opcode	
31	25 2	24	17	10		7 5	3	0	
Function: 0: A+B 1: A-B 2: B+1 3: B-1 4: A & B 5: A B	Shift (rot 0: no sł 1: RCY 2: RCY 3: RCY1	tates righ hift 1 8 16	nt): Skip: 0: nevel 1: ALU< 2: ALU= 3: InRdy	Opcode: 0: normal: Rw= 0 1: storeDM: DM 0 2: storeIM: IM[I 3: out: OutStro 4: loadDM: Rw 5: in: Rw=in_d	=F(Ra,Fb I[Rb]=Ra, Rb]=Ra, be, Rw= =DM[Rb] ata, ALD), skip a, Rw= Rw=F(F(Ra,R , ALU= =F(Ra,	if con F(Ra,I (Ra,Rb (b), sk =F(Ra, Rb), s	dition Rb), skip if), skip if (ip if cond Rb), skip kip i	f condition condition ition if condition dition
7: reserved				7: reserved	C+1, FC	-i (Na	,1\0),1	io skih	

TTC3 Instruction Set Summary

LC=load constant (bits 23:0 of the instruction), no skip

PC=program counter

ALU=Function(Ra,Rb), where the Function is specified by the Func bits F(Ra,Rb)=rotate(Shift, ALU), where the rotation is specified by the Shift bits