COMPUTER SCIENCE TRIPOS Part IB - 2013 - Paper 3

2 Algorithms II (FMS)

(a) Draw a clear sequence of commented snapshots showing what happens when applying the following sequence of operations to the two-tree Fibonacci heap pictured below, where asterisks denote marked nodes.

- insert key 5
- extract the minimum
- decrease key 8 by 2

93
|
4 6*
|
7*
।
8
[You should draw one snapshot after each operation; and also, if it makes your explanation clearer, between 0 and 3 snapshots at key points during each operation.]
(b) Explain how "cascading cuts" work.
(c) Explain in clear detail why "cascading cuts" are necessary to achieve the Fibonacci heap's performance. What methods would be slower without cascading cuts, and by how much?
(d) "If, in a Fibonacci heap, we never call decreaseKey () or delete(), then at any time the degree (number of children) of any node is at most $\lceil\lg n\rceil$, where n is the total number of nodes in the heap at that time." True or false? Give a proof or a counterexample.

