COMPUTER SCIENCE TRIPOS Part IA - 2013 - Paper 2

8 Regular Languages and Finite Automata (AMP)

(a) (i) Given any non-deterministic finite automaton M, describe how to construct a regular expression r whose language of matching strings $L(r)$ is equal to the language $L(M)$ accepted by M.
(ii) Give a regular expression r with $L(r)=L(M)$ when M is the following non-deterministic finite automaton.

(b) State the Pumping Lemma and explain how it is used to prove that languages are not regular.
(c) Are the following languages regular? Justify your answer in each case.
(i) $L_{1}=\left\{a^{k} b^{m} c^{n} \mid(k=m\right.$ or $m=n)$ and $\left.k+m+n \geq 2\right\}$
(ii) $L_{2}=\left\{a^{k} b^{m} c^{n} \mid(k=m\right.$ or $m=n)$ and $\left.k+m+n \leq 2\right\}$
(iii) $L_{3}=\left\{a^{k} b^{m} c^{n} \mid k+m+n \geq 2\right\}$

