COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 2

6 Discrete Mathematics II (MPF)

Let $R \subseteq U \times U$ be a relation on a set U.

(a) Let $R^{\dagger} \subseteq U \times U$ be the relation inductively defined by the rules

$$(a,b) \in R \qquad (a,b) (b,c) = (a,c)$$

and let $R^{\bullet} \subseteq U \times U$ be the relation inductively defined by the rules

$$(a,b) \in R \qquad (b,c) \quad (a,b) \in R \qquad (b,c) \quad (a,b) \in R$$

Either prove or disprove the following statements.

(i) $R^{\bullet} \subseteq R^{\dagger}$ [4 marks]

(*ii*)
$$R^{\dagger} \subseteq R^{\bullet}$$
 [4 marks]

(b) Let $R^{\diamond} \subseteq U \times U$ be the relation inductively defined by the rules

$$(a,b) \in R$$
 $(b,c) (a,b), (c,d) \in R$

Either prove or disprove the following statements.

- (i) $R^{\diamond} \subseteq \bigcup_{n \in \mathbb{N}_0} R^{2n+1}$ [4 marks]
- (*ii*) $\bigcup_{n \in \mathbb{N}_0} R^{2n+1} \subseteq R^\diamond$ [4 marks]

$$(iii) (R^{\diamond})^{-1} = (R^{-1})^{\diamond}$$
 [4 marks]

You may assume without proof that for each $n \in \mathbb{N}_0$, the relation $\mathbb{R}^n \subseteq U \times U$ satisfies $\mathbb{R} \circ \mathbb{R}^n = \mathbb{R}^{n+1} = \mathbb{R}^n \circ \mathbb{R}$ and $(\mathbb{R}^n)^{-1} = (\mathbb{R}^{-1})^n$.