## COMPUTER SCIENCE TRIPOS Part IA - 2013 - Paper 2

## 6 Discrete Mathematics II (MPF)

Let $R \subseteq U \times U$ be a relation on a set $U$.
(a) Let $R^{\dagger} \subseteq U \times U$ be the relation inductively defined by the rules

$$
\overline{(a, b)}(a, b) \in R \quad \frac{(a, b)(b, c)}{(a, c)}
$$

and let $R^{\bullet} \subseteq U \times U$ be the relation inductively defined by the rules

$$
\overline{(a, b)}(a, b) \in R \quad \frac{(b, c)}{(a, c)}(a, b) \in R
$$

Either prove or disprove the following statements.
(i) $R^{\bullet} \subseteq R^{\dagger}$
(ii) $R^{\dagger} \subseteq R^{\bullet}$
(b) Let $R^{\diamond} \subseteq U \times U$ be the relation inductively defined by the rules

$$
\overline{(a, b)}(a, b) \in R \quad \frac{(b, c)}{(a, d)}(a, b),(c, d) \in R
$$

Either prove or disprove the following statements.
(i) $R^{\diamond} \subseteq \bigcup_{n \in \mathbb{N}_{0}} R^{2 n+1}$
(ii) $\bigcup_{n \in \mathbb{N}_{0}} R^{2 n+1} \subseteq R^{\diamond}$
(iii) $\left(R^{\diamond}\right)^{-1}=\left(R^{-1}\right)^{\diamond}$

You may assume without proof that for each $n \in \mathbb{N}_{0}$, the relation $R^{n} \subseteq U \times U$ satisfies $R \circ R^{n}=R^{n+1}=R^{n} \circ R$ and $\left(R^{n}\right)^{-1}=\left(R^{-1}\right)^{n}$.

