## COMPUTER SCIENCE TRIPOS Part IA - 2013 - Paper 2

## 5 Discrete Mathematics II (MPF)

(a) Let $\mathbb{N}_{0}$ be the set $\{0,1, \cdots\}$ of natural numbers with zero and, for $k \in \mathbb{N}_{0}$, let $[k]=\left\{i \in \mathbb{N}_{0} \mid i<k\right\}$.

For $m, n \in \mathbb{N}_{0}$ :
(i) Define the disjoint union $[m] \uplus[n]$ of $[m]$ and $[n]$ together with a bijective function $[m] \uplus[n] \rightarrow[m+n]$.
(ii) Define the cartesian product $[m] \times[n]$ of $[m]$ and $[n]$ together with a bijective function $[m] \times[n] \rightarrow[m \cdot n]$.
[4 marks]
(iii) Define the powerset $\mathcal{P}[m]$ of $[m]$ together with a bijective function $\mathcal{P}[m] \rightarrow\left[2^{m}\right]$.
[4 marks]
(iv) Consider the set $([m] \Rightarrow[n])$ of functions from $[m]$ to $[n]$ and define a bijective function $([m] \Rightarrow[n]) \rightarrow\left[n^{m}\right]$.
[4 marks]
In each case, justify why the functions you have defined are bijective.
(b) For a set $D$, show that, if there exists a surjection from $D$ to the set $(D \Rightarrow D)$ of functions from $D$ to $D$, then $D$ has exactly one element. You may use standard results provided you state them clearly.

