COMPUTER SCIENCE TRIPOS Part IA - 2013 - Paper 2

1 Digital Electronics (IJW)

(a) A four-variable Boolean function is given by

$$
F=A \cdot B \cdot C+B \cdot C \cdot D+A \cdot \bar{C} \cdot D
$$

where $A \cdot B \cdot \bar{C} \cdot \bar{D}, A \cdot \bar{B} \cdot C \cdot D$ and $\bar{A} \cdot \bar{B} \cdot C \cdot D$ are don't-care states. Using a Karnaugh map or otherwise:
(i) Find the simplest sum of products expression for F.
(ii) Design a circuit to implement F using NAND gates only.
(iii) Design a circuit to implement F using NOR gates only.
(b) Define static 1 and static 0 hazards.
(c) Consider the following multi-level Boolean function.

$$
Y=A \cdot B \cdot C+(A+D) \cdot(\bar{A}+\bar{C})
$$

(i) Determine with the aid of a Karnaugh Map, or otherwise, a minimised sum of products expression for Y that does not possess static 1 hazards.
(ii) Show with the aid of a Karnaugh map, or otherwise, that your proposed solution in part $(c)(i)$ does not possess static 0 hazards.

