## COMPUTER SCIENCE TRIPOS Part IA - 2013 - Paper 1

## 7 Floating-Point Computation (DJG)

The following two functions are algorithms for exponentiation where $x$ is a singleprecision floating-point value and $n$ is an integer,
fun power1 $(\mathrm{x}, \mathrm{n})=$ if $\mathrm{n}=0$ then 1.0 else $\mathrm{x} * \operatorname{power} 1(\mathrm{x}, \mathrm{n}-1)$

```
fun power2(x, n) = if n=0 then 1.0
    else if even n then power2(x * x, n div 2)
    else x * power2(x, n-1)
```

(a) What is, roughly, the largest value of $n$ that can be used without overflow when $x$ is 10.0 ?
(b) Suppose $x$ is close to 1.0 .
(i) What is the worst possible relative error to expect in the answer from power1 when $n=100$ ?
(ii) Can we say anything useful about the absolute error in part (b)(i)?
(iii) What is the expected value of the relative error in results from power1?
(c) Sometimes the expected magnitude of error can be estimated as the result of a random walk.
(i) Under what conditions is this appropriate?
(ii) What is the random walk estimate for the relative error in part $(b)(i)$ ?
[3 marks]
(d) If $x$ is again close to 1.0 , what is the worst possible relative error to expect from power2 when $n=100$ ?
[6 marks]
(e) For what range or class of $x$ values will power2 with $n=100$ give a result with no error?
[3 marks]

