COMPUTER SCIENCE TRIPOS Part IA - 2013 - Paper 1

6 Algorithms I (FMS)

A palindrome is a string that, if reversed, remains the same, for example "madamimadam". A subsequence of a string x is one obtained by dropping zero or more characters from x and taking the remaining ones in order: for example "tan" is a subsequence of "pentagon". In this question you must find the longest palindrome subsequence (LPS) of a given string. [Note that the LPS may not be unique.]
(a) Explain why it is possible to apply dynamic programming to the LPS problem. Develop and explain a recursive equation for the length of the LPS. [6 marks]
(b) Develop and describe in detail, with pictures where appropriate, a bottom-up dynamic programming algorithm to solve the LPS problem. Include an explanation of how to recover the LPS from the bottom-up table you build. If you use pseudocode (not required), keep each pseudocode chunk under 10 lines and comment it clearly. Incomprehensible code will be scored as wrong.
(c) Derive the asymptotic worst-case running time of your algorithm.
(d) What else would you have to do to recover all the LPSs of a given string?

