COMPUTER SCIENCE TRIPOS Part II – 2012 – Paper 9

14 Types (AMP)

(a) For each type variable α , the option type O_{α} is defined to be the PLC type

$$O_{\alpha} \stackrel{\text{def}}{=} \forall \beta \left(\beta \to (\alpha \to \beta) \to \beta \right).$$

Prove that there are closed PLC expressions *None*, *Some* and *Case* with the following typing and beta-conversion properties.

- (i) \vdash None : $\forall \alpha (O_{\alpha})$
- (*ii*) \vdash Some : $\forall \alpha \ (\alpha \rightarrow O_{\alpha})$
- (*iii*) $\vdash Case : \forall \alpha, \beta \ (\beta \to (\alpha \to \beta) \to O_{\alpha} \to \beta)$
- (*iv*) Case $\alpha \beta y f$ (None α) = $_{\beta} y$
- (v) Case $\alpha \beta y f$ (Some αx) = $_{\beta} f x$.

[10 marks]

(b) Use Case and None to define a closed PLC expression Lift of type $\forall \alpha_1, \alpha_2 ((\alpha_1 \to O_{\alpha_2}) \to O_{\alpha_1} \to O_{\alpha_2})$ with the property that for all closed types τ and all closed expressions M of type $O_{\alpha}[\tau/\alpha]$, Lift $\tau \tau(Some \tau) M =_{\beta} M$. You may assume that any closed beta-normal form of type $O_{\alpha}[\tau/\alpha]$ is beta-convertible either to None τ , or to Some τN where N is a beta-normal form of type τ . Any standard results about PLC that you use should be carefully stated. [10 marks]