COMPUTER SCIENCE TRIPOS Part IB – 2012 – Paper 6

7 Mathematical Methods for Computer Science (JGD)

- (a) Define linear independence and linear dependence for the set of vectors $\{v_1, v_2, \ldots, v_n\}$ of a vector space V over a field \mathbb{F} of scalars $a_1, a_2, \ldots, a_n \in \mathbb{F}$. [4 marks]
- (b) Using the Euclidean norm on an inner product space $V = \mathbb{R}^3$, for the following vectors $u, v \in V$ whose span is a linear subspace of V,

$$u = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
$$v = \left(\sqrt{3}, -\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}\right)$$

demonstrate whether u, v form an *orthogonal system*, and also whether they form an *orthonormal system*. [4 marks]

- (c) Using a diagram in the complex plane showing the N^{th} roots of unity, explain why all the values of complex exponentials that are needed for computing the Discrete Fourier transform of N data points are powers of a primitive N^{th} root of unity (circled here for N = 16), and explain why such factorisation greatly reduces the number of multiplications required in a Fast Fourier transform. [4 marks]
- (d) For the function $f(x) = e^{-a|x|}$ with a > 0, derive its Fourier transform $F(\omega)$. [4 marks]
- (e) For a function f(x) whose Fourier transform is $F(\omega)$, what is the Fourier transform of $f^{(n)}(x)$, the n^{th} derivative of f(x) with respect to x? Explain how Fourier methods make it possible to define non-integer orders of derivatives, and name one scientific field in which it is useful to take half-order derivatives.

[4 marks]