COMPUTER SCIENCE TRIPOS Part IB - 2012 - Paper 6

7 Mathematical Methods for Computer Science (JGD)

(a) Define linear independence and linear dependence for the set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of a vector space V over a field \mathbb{F} of scalars $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}$.
[4 marks]
(b) Using the Euclidean norm on an inner product space $V=\mathbb{R}^{3}$, for the following vectors $u, v \in V$ whose span is a linear subspace of V,

$$
\begin{gathered}
u=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
v=\left(\sqrt{3},-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right)
\end{gathered}
$$

demonstrate whether u, v form an orthogonal system, and also whether they form an orthonormal system.
(c) Using a diagram in the complex plane showing the $N^{\text {th }}$ roots of unity, explain why all the values of complex exponentials that are needed for computing the Discrete Fourier transform of N data points are powers of a primitive $N^{\text {th }}$ root of unity (circled here for $N=16$), and explain why such factorisation greatly reduces the number of multiplications required in a Fast Fourier transform.
[4 marks]
(d) For the function $f(x)=e^{-a|x|}$ with $a>0$, derive its Fourier transform $F(\omega)$.
[4 marks]
(e) For a function $f(x)$ whose Fourier transform is $F(\omega)$, what is the Fourier transform of $f^{(n)}(x)$, the $n^{\text {th }}$ derivative of $f(x)$ with respect to x ? Explain how Fourier methods make it possible to define non-integer orders of derivatives, and name one scientific field in which it is useful to take half-order derivatives.
[4 marks]

