COMPUTER SCIENCE TRIPOS Part IB – 2012 – Paper 5

8 Concurrent and Distributed Systems (SMH)

(a)	In the context of concurrent systems, what is a <i>transaction</i> ?	[1 mark]
(b)	Describe the ACID properties of transactions.	[4 marks]
(c)	Compare and contrast <i>strict</i> and <i>non-strict</i> isolation.	[2 marks]
(d)	For each of the following, describe how it can be used to provide isolati strict isolation:	on and/or
	(i) 2-Phase Locking (2PL)	[3 marks]
	(ii) Time-Stamp Ordering (TSO)	[3 marks]
	(<i>iii</i>) Optimistic Concurrency Control (OCC)	[3 marks]

- (e) A researcher suggests an isolation scheme that works as follows:
 - (i) Every object o has an associated version number, V(o).
 - (ii) When executing, a transaction reads a copy of any object it wishes to access, and remembers the version number.
 - (iii) If the transaction wishes to modify an object, it modifies the copy rather than the original.
 - (*iv*) When complete, the transaction checks the versions of all objects it has modified; if any are different, it aborts; otherwise it writes back the new versions of all objects, incrementing their version numbers, and commits.

Assuming that step (iv) occurs atomically, does this scheme ensure serializability? Justify your answer. [4 marks]