COMPUTER SCIENCE TRIPOS Part IB - 2012 - Paper 4

5 Databases (KM)

This question explores *Heath's Rule*, which states that if R(X, Y, Z) satisfies the functional dependency $X \to Y$, where X, Y, and Z are disjoint non-empty sets of attributes, then

$$R = \pi_{X,Y}(R) \bowtie_X \pi_{X,Z}(R),$$

where \bowtie_X is the natural join on the attributes of X.

- (a) What is meant by the functional dependency $X \to Y$? [2 marks]
- (b) Define the natural join operation \bowtie_X . [2 marks]
- (c) Suppose that the functional dependency $X \to Y$ holds and we use Heath's rule to justify replacing the schema R(X, Y, Z) with $R_1(X, Y)$ and $R_2(X, Z)$.
 - (i) Give two possible advantages for this schema change. [2 marks]
 - (ii) Give two possible disadvantages for this schema change. [2 marks]
 - (iii) Is X a key for R_1 ? Explain. [2 marks]
 - (iv) Is X a key for R_2 ? Explain. [2 marks]
- (d) Prove that Heath's Rule always holds. [8 marks]