COMPUTER SCIENCE TRIPOS Part IB - 2012 - Paper 4

2 Artificial Intelligence I (SBH)

We wish to solve the following graph colouring problem by treating it as a constraint satisfaction problem.

The nodes of the graph must be coloured either red (R), blue (B) or green (G) with no pair of connected nodes having the same colour.
(a) Describe Gaschnig's algorithm. In what way does it improve on chronological backtracking?
(b) The following sequence of assignments has been made: $1=\mathrm{R}, 2=\mathrm{G}, 3=\mathrm{B}$, $4=\mathrm{G}, 5=\mathrm{B}$. Explain how Gaschnig's algorithm operates when trying to make an assignment to 6 .
(c) Describe how graph-based backjumping would behave in the situation described in part (b). Does it backjump to the same place? Why might graph-based backjumping in general be preferred to Gaschnig's algorithm?
[6 marks]
(d) Describe how forward checking would deal with the sequence of assignments given in part (b). How does the effectiveness of backjumping compare with that of forward checking in this case?
[5 marks]

