COMPUTER SCIENCE TRIPOS Part IA – 2012 – Paper 2

5 Discrete Mathematics II (GW)

Let A, B, C be sets with relations $R \subseteq A \times B$ and $S \subseteq B \times C$.

- (a) Give the definition of the relational composition $S \circ R$. [1 mark]
- (b) The functions p, q, r are defined as follows:
 - $p: A \times B \times C \to A \times B \quad \text{such that} \quad p(a, b, c) = (a, b)$ $q: A \times B \times C \to B \times C \quad \text{such that} \quad q(a, b, c) = (b, c)$ $r: A \times B \times C \to A \times C \quad \text{such that} \quad r(a, b, c) = (a, c)$
 - (i) Describe the inverse images $p^{-1}R$ and $q^{-1}S$. [2 marks]
 - (*ii*) For $X \subseteq A \times B \times C$ describe its direct image r X under r. [2 marks]
 - (*iii*) Prove that the relational composition $S \circ R$ equals $r(p^{-1}R \cap q^{-1}S)$, the direct image of the set $p^{-1}R \cap q^{-1}S$ under r. [5 marks]
- (c) Suppose the relations R and S are countable. Is the relational composition $S \circ R$ countable? Justify your answer. [Note: You may use any well-known results provided you state them clearly.] [6 marks]
- (d) Suppose now that A = B = C and that both R and S are well-founded relations. Is the relational composition $S \circ R$ well-founded? Justify your answer.

[4 marks]