COMPUTER SCIENCE TRIPOS Part IA - 2012 - Paper 2

5 Discrete Mathematics II (GW)

Let A, B, C be sets with relations $R \subseteq A \times B$ and $S \subseteq B \times C$.
(a) Give the definition of the relational composition $S \circ R$.
(b) The functions p, q, r are defined as follows:

$$
\begin{array}{llll}
p: A \times B \times C \rightarrow A \times B & \text { such that } & p(a, b, c)=(a, b) \\
q: A \times B \times C \rightarrow B \times C & \text { such that } & q(a, b, c)=(b, c) \\
r: A \times B \times C \rightarrow A \times C & \text { such that } & r(a, b, c)=(a, c)
\end{array}
$$

(i) Describe the inverse images $p^{-1} R$ and $q^{-1} S$
(ii) For $X \subseteq A \times B \times C$ describe its direct image $r X$ under r.
(iii) Prove that the relational composition $S \circ R$ equals $r\left(p^{-1} R\right.$ direct image of the set $p^{-1} R \cap q^{-1} S$ under r.
$\left.\cap q^{-1} S\right)$, the [5 marks]
(c) Suppose the relations R and S are countable. Is the relational composition $S \circ R$ countable? Justify your answer. [Note: You may use any well-known results provided you state them clearly.]
(d) Suppose now that $A=B=C$ and that both R and S are well-founded relations. Is the relational composition $S \circ R$ well-founded? Justify your answer.
[4 marks]

