
COMPUTER SCIENCE TRIPOS Part IA – 2012 – Paper 2

2 Digital Electronics (IJW)

- (a) With the aid of appropriate diagrams, show how the Source–Drain current that flows in a p-channel MOSFET is controlled by the applied Gate–Source voltage. [4 marks]
- (b) (i) Draw the circuit diagram of a NOT gate that comprises an n-channel MOSFET and a resistor R. [2 marks]
 - (*ii*) For the NOT gate in (b)(i), plot the relationship between the input voltage, $V_{\rm in}$ and the output voltage, $V_{\rm out}$. Assume that the power supply voltage $V_{\rm DD} = 12$ V, R = 1 k Ω , and that the MOSFET has the characteristics given in the following figure. [4 marks]

- (c) For the NOT gate in (b), calculate the power dissipated by the entire gate and that by resistor R alone, when $V_{in} = 12$ V. [4 marks]
- (d) The stray capacitance present at the output of the NOT gate in (b) can be represented by a capacitor, C = 100 nF connected between the gate output and 0 V. Also assume that the MOSFET has an ON resistance $R_{\rm on} = 100 \ \Omega$. The input signal, $V_{\rm in}$, is a 1 kHz square wave with minimum and maximum amplitudes of 0 V and 12 V respectively.
 - (i) Sketch the output signal waveform, V_{out} , of the NOT gate being sure to include indicative rise and fall times and voltage levels. [4 marks]
 - (*ii*) How could the rise-time of V_{out} be reduced and what would be the impact of your proposed solution on the power dissipation of the circuit?

[2 marks]