COMPUTER SCIENCE TRIPOS Part IA - 2012 - Paper 2

1 Digital Electronics (IJW)

(a) Show how a transparent D latch can be constructed using an RS latch and some combinational logic gates. Briefly describe the operation of such a transparent D latch.
(b) A 3-bit synchronous counter has a mode control input X. If $X=0$, the counter steps through the binary sequence $111,110,101,100,011,010,001,000$, and repeat, or if $X=1$, the counter advances through the Grey code sequence 111, $101,100,000,001,011,010,110$, and repeat. Draw the state diagram for the counter.
[6 marks]
(c) A machine has the state diagram shown below, where N and D are two inputs and $N=D=1$ cannot occur. The state assignment is $S_{0}=[00], S_{1}=[01]$, $S_{2}=[10]$ and $S_{3}=[11]$, where the machine starts in state S_{0} and finishes in state S_{3}. Note that state $=\left[Q_{1} Q_{0}\right]$ where Q_{n} is the output of flip-flop n.

(i) Write down the state transition table for this machine.
(ii) Assuming the use of D-type flip-flops for the state registers, determine the minimised Boolean expressions for the next state functions.

