## COMPUTER SCIENCE TRIPOS Part IA - 2012 - Paper 1

## 7 Floating-Point Computation (DJG)

(a) Briefly describe the steps used in floating-point multiplication.
(b) What exceptions are possible during floating-point multiplication and at what stage in the process of part $(a)$ should they be checked?
(c) Give code or pseudocode that divides a binary-coded floating-point variable by the constant number ten (1010 in binary). [Note: Full marks awarded for code or pseudocode optimised for this constant divisor.]
(d) Explain the principle of the following iteration:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

(e) A programmer writes the following iteration for the square-root of $A$.

$$
x_{n+1}=\frac{\frac{A}{x_{n}}+x_{n}}{2}
$$

Show that this is a Newton-Raphson iteration (or otherwise explain its basis) and say approximately how many steps it should take to converge for single and double-precision floating point.

