COMPUTER SCIENCE TRIPOS Part IA - 2012 - Paper 1

4 Discrete Mathematics I (SS)

(a) Let A be the set $\{1,2,3\}$. The following relations are subsets of $A \times A$. Draw them as directed graphs.
(i) $R_{1}=\{(x, y) \mid x \in A \wedge y \in A \wedge x-y=1\}$
(ii) $R_{2}=\{(x, y) \mid x \in A \wedge y \in A \wedge x-y \geq 1\}$
(iii) $R_{3}=\{(x, y) \mid x \in A \wedge y \in A \wedge x-y=0\}$
(iv) $R_{4}=\{(x, y) \mid x \in A \wedge y \in A \wedge \neg(x-y=0)\}$
(v) $R_{5}=\{(x, y) \mid x \in A \wedge y \in A \wedge \forall u . \exists v \cdot x+u=y+v\}$
where u and v range over the integers
(vi) $R_{6}=\{(x, y) \mid x \in A \wedge y \in A \wedge \exists u . \forall v \cdot x+u=y+v\}$ where u and v range over the integers
(b) Write down what it means for a relation to be transitive. Which of the relations in part (a) are transitive?
(c) Write down the introduction and elimination rules for the universal quantifier in structured proof.
(d) Recall the following introduction and elimination rules for implication.

$$
\begin{aligned}
& \hline m . \text { Assume } P \\
& \ldots \\
& n . Q \text { from } \ldots \text { by } \ldots \\
& n+1 . P \Rightarrow Q \text { from } m-n, \\
& \quad \text { by } \Rightarrow \text {-introduction. }
\end{aligned}
$$

 l. \(P \Rightarrow Q\) from ... by ...
 m. \(P\) from ... by ...
 n. \(Q\) from \(l, m\)
 by \(\Rightarrow\)-elimination.
 Write down a structured proof of the following statement.

$$
(\forall a \cdot P(a) \Rightarrow Q(a)) \Rightarrow((\forall b \cdot Q(b) \Rightarrow R(b)) \Rightarrow(\forall c \cdot P(c) \Rightarrow R(c)))
$$

