2011 Paper 9 Question 14

Types

Let x range over a set of identifiers and α range over a set of type variables. Now suppose we have a set of types, τ , and a set of type schemes, σ , given by

$$\tau ::= \alpha | \tau \to \tau | \tau \text{ list} \\ \sigma ::= \forall \alpha_1, \dots, \alpha_n(\tau)$$

and a language of terms, M, given by

- (a) Define the relation of specialisation, $\tau \prec \sigma$, between types τ and type schemes σ . [3 marks]
- (b) Give the ML-like type inference rules for judgements of the form $\Gamma \vdash M : \tau$, and explain why λ -bound variables cannot be used polymorphically within a function abstraction, while let-bound variables can within a local declaration.

Hint: Consider the terms $\lambda f(f f)$ and let $f = \lambda x(x)$ in f f.

[8 marks]

- (c) Briefly explain what is meant by *capture-avoiding substitution* for type schemes. [2 marks]
- (d) Prove that for all τ , all σ and all substitutions for type schemes S, if $\tau \prec \sigma$ holds, then also $S(\tau) \prec S(\sigma)$.

Hint: Use the following property of simultaneous substitution:

$$(\tau[\tau_1/\alpha_1,\ldots,\tau_n/\alpha_n])[\vec{\tau}'/\vec{\alpha}'] = \tau[\vec{\tau}'/\vec{\alpha}'][\tau_1[\vec{\tau}'/\vec{\alpha}']/\alpha_1,\ldots,\tau_n[\vec{\tau}'/\vec{\alpha}']/\alpha_n]$$

which holds, provided that for each i, α_i is distinct from the type variables $\vec{\alpha'}$, and α_i does not occur in type schemes $\vec{\tau'}$.

[7 marks]