2011 Paper 9 Question 13

Topics in Concurrency

This question concerns CTL⁻, a variant of CTL in which assertions are of the form:

$$A := T \mid A_0 \lor A_1 \mid A_0 \land A_1 \mid \neg A \mid \langle \lambda \rangle A \mid \langle - \rangle A \mid \mathbf{AG} A \mid \mathbf{EG} A$$

where λ ranges over action names. Recall that a path π from state s is a maximal sequence of states $\pi = (\pi_0, \pi_1, \pi_2, \ldots)$ such that $s = \pi_0$ and $\pi_i \longrightarrow \pi_{i+1}$ for all i. The logical connectives have the standard interpretation and T represents "true". The interpretation of the modalities is:

$s \models \langle \lambda \rangle A$	iff	there exists s' such that $s \xrightarrow{\lambda} s'$ and $s' \models A$
$s \models \langle - \rangle A$	iff	there exists s' such that $s \longrightarrow s'$ and $s' \models A$
$s \models \mathbf{EG} A$	iff	for some path π from s, we have $\pi_i \models A$ for all i
$s \models \mathbf{AG} A$	iff	for all paths π from s, we have $\pi_i \models A$ for all i

- (a) What is the interpretation of the CTL modality $\mathbf{E}[A_0 \mathbf{U} A_1]$? How can it be used to express the CTL⁻ modality $\mathbf{AG} A$? [4 marks]
- (b) Consider the following three formulae:
 - $A_{1}: \mathbf{A}\mathbf{G} \langle a \rangle T \qquad A_{2}: \neg \mathbf{A}\mathbf{G} \neg \langle b \rangle T \qquad A_{3}: \neg \mathbf{E}\mathbf{G} \langle b \rangle T$
 - (i) For each of the following two transition systems, state which of A_1 , A_2 and A_3 are satisfied in the initial state.

[4 marks]

- (*ii*) Draw a transition system with an initial state that satisfies $A_1 \wedge A_2 \wedge A_3$. [3 marks]
- (c) Give a modal- μ formula that corresponds to the CTL⁻ formula **AG** $\langle a \rangle T$. [2 marks]
- (d) Let the function φ on sets of states of a transition system be defined as:

$$\varphi(X) \stackrel{\text{def}}{=} \langle a \rangle T \lor \langle - \rangle X$$

Show by induction on $n \ge 1$ that

$$s \models \varphi^n(\emptyset)$$
 iff there exists $m \le n$ and states s_1, \ldots, s_m, s'
such that $s = s_1 \xrightarrow{\cdot} \ldots \xrightarrow{\cdot} s_m \xrightarrow{a} s'$

Deduce that $s \models \mu X$. $\langle A \rangle T \lor \langle - \rangle X$ in a finite-state transition system if, and only if, $s \models \neg \mathbf{AG} \neg \langle a \rangle T$. [7 marks]