2011 Paper 8 Question 13

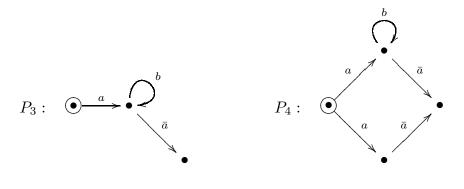
Topics in Concurrency

(a) Draw the transition systems of the following two pure CCS terms:

$$P_1 \stackrel{\text{def}}{=} (a.(b+c) \parallel \overline{b}) \setminus \{b\} \qquad P_2 \stackrel{\text{def}}{=} a.(c+\tau)$$

[3 marks]

(b) Write down pure CCS terms for the following two transition systems:



[3 marks]

- (c) Carefully justify your answers to the following two questions either by exhibiting a bisimulation or by providing a Hennessy–Milner logic formula satisfied by one process and not by the other:
 - (i) Are P_1 and P_2 bisimilar? [3 marks]
 - (*ii*) Are P_3 and P_4 bisimilar? [3 marks]
- (d) A trace of a process p_0 is a finite sequence of action labels

$$\pi = (\lambda_1, \ldots, \lambda_k)$$

for which, if π is nonempty, there exist p_1, \ldots, p_k such that $p_{i-1} \xrightarrow{\lambda_i} p_i$ for all $0 < i \leq k$. Two processes p and p' are said to be *trace-equivalent* if, for all sequences of action labels π ,

 π is a trace of p if, and only if, π is a trace of p'

- (i) Are trace-equivalent processes always bisimilar?
- (*ii*) Are bisimilar processes always trace-equivalent?

In each case, provide either a proof or a counterexample. [8 marks]