2011 Paper 6 Question 9

Semantics of Programming Languages

The following grammar specifies the syntax of a simple imperative programming
language. It is a fragment of L3.

Values: v == skip|n|x|/{
(n ranges over integers, x over variables, and ¢ over locations)
Ezpressions: e = v|letz=eine |v+v |v:=0v" | v | ref(v)
Types: T := unit | int | Tref
Stores: s finite partial functions from locations to values

Environments: T finite partial functions from locations and variables to types

Note that the grammar is very restrictive. For instance, the expression (3 +4) + 7
is not allowed.

The language is typed according to the following standard rules.

for n an integer

I' - skip : unit I'Fn:int
o7 ITe=T T 7 Trof 1) =Tref
I'te:T T,x:Tke:T 'Fov:int T'F9o :int
'-letz=eine : T’ '-v+7v:int
I'Fv:Tref Tk :T I'ov:Tref 'Fo:T
['Fov:=v:unit F-lv:T '+ ref(v) : Tref

(a) Give a reasonable operational semantics for this language by defining a relation
over configurations. [7 marks]

(b) Write down all the reduction steps of the following expression. You do not
need to give their derivations.

let z =ref(0)inlety=!xinlet z=y+3inz:=2
[3 marks]

(¢) State and prove a Type Preservation Theorem for this language.

You may assume the following definition:

a store s is well-typed for I', written I' - s,
if for all locations ¢ € dom(s), there is a type T’
such that I'(¢/) = Trefand '+ s(¢) : T

You may also assume the following substitution lemma:
Iltv:Tand 'z :TFe:T" with x ¢ dom(I") then I' - {v/z}e : T”

[10 marks]

