
2011 Paper 6 Question 9

Semantics of Programming Languages

The following grammar specifies the syntax of a simple imperative programming
language. It is a fragment of L3.

Values: v ::= skip | n | x | `
(n ranges over integers, x over variables, and ` over locations)

Expressions: e ::= v | let x = e in e′ | v + v′ | v := v′ | !v | ref(v)
Types: T ::= unit | int | T ref
Stores: s finite partial functions from locations to values
Environments: Γ finite partial functions from locations and variables to types

Note that the grammar is very restrictive. For instance, the expression (3 + 4) + 7
is not allowed.

The language is typed according to the following standard rules.

Γ ` skip : unit Γ ` n : int
for n an integer

Γ ` x : T
if Γ(x) = T

Γ ` ` : T ref
if Γ(`) = T ref

Γ ` e : T Γ, x:T ` e′ : T ′

Γ ` let x = e in e′ : T ′
Γ ` v : int Γ ` v′ : int

Γ ` v + v′ : int

Γ ` v : T ref Γ ` v′ : T

Γ ` v := v′ : unit

Γ ` v : T ref

Γ ` !v : T

Γ ` v : T

Γ ` ref(v) : T ref

(a) Give a reasonable operational semantics for this language by defining a relation
over configurations. [7 marks]

(b) Write down all the reduction steps of the following expression. You do not
need to give their derivations.

let x = ref(0) in let y = !x in let z = y + 3 in x := z

[3 marks]

(c) State and prove a Type Preservation Theorem for this language.

You may assume the following definition:

a store s is well-typed for Γ, written Γ ` s,
if for all locations ` ∈ dom(s), there is a type T
such that Γ(`) = T ref and Γ ` s(`) : T

You may also assume the following substitution lemma:

If Γ ` v : T and Γ, x : T ` e : T ′ with x 6∈ dom(Γ) then Γ ` {v/x}e : T ′

[10 marks]

1

