2011 Paper 6 Question 9

Semantics of Programming Languages

The following grammar specifies the syntax of a simple imperative programming language. It is a fragment of L3.

Values:	v	$::= \operatorname{\mathbf{skip}} \mid n \mid x \mid \ell$
		(<i>n</i> ranges over integers, x over variables, and ℓ over locations)
Expressions:	e	$::= v \mathbf{let} x = e \mathbf{in} e' v + v' v := v' !v \mathbf{ref}(v)$
Types:	T	::= unit int T ref
Stores:	s	finite partial functions from locations to values
Environments:	Γ	finite partial functions from locations and variables to types

Note that the grammar is very restrictive. For instance, the expression (3+4)+7 is not allowed.

The language is typed according to the following standard rules.

$\overline{\Gamma \vdash \mathbf{skip} : \mathbf{unit}}$	$\overline{\Gamma \vdash n: \mathbf{int}} \text{for } n \text{ an integer}$
$\overline{\Gamma \vdash x:T}$ if $\Gamma(x) = T$	$\overline{\Gamma \vdash \ell : T \operatorname{ref}}$ if $\Gamma(\ell) = T \operatorname{ref}$
$\frac{\Gamma \vdash e: T \Gamma, x: T \vdash e': T'}{\Gamma \vdash \mathbf{let} \ x = e \ \mathbf{in} \ e': T'}$	$\frac{\Gamma \vdash v: \mathbf{int} \Gamma \vdash v': \mathbf{int}}{\Gamma \vdash v + v': \mathbf{int}}$
$\Gamma \vdash v: T \operatorname{\mathbf{ref}} \Gamma \vdash v': T$	$\underline{\Gamma \vdash v : T \mathbf{ref}} \qquad \qquad \Gamma \vdash v : T$
$\Gamma \vdash v := v' : \mathbf{unit}$	$\Gamma \vdash !v:T$ $\Gamma \vdash \mathbf{ref}(v):T$ ref

- (a) Give a reasonable operational semantics for this language by defining a relation over configurations. [7 marks]
- (b) Write down all the reduction steps of the following expression. You do not need to give their derivations.

let $x = \operatorname{ref}(0)$ in let y = !x in let z = y + 3 in x := z[3 marks]

(c) State and prove a Type Preservation Theorem for this language.

You may assume the following definition:

a store s is well-typed for Γ , written $\Gamma \vdash s$, if for all locations $\ell \in \text{dom}(s)$, there is a type T such that $\Gamma(\ell) = T \operatorname{ref}$ and $\Gamma \vdash s(\ell) : T$

You may also assume the following substitution lemma:

If $\Gamma \vdash v : T$ and $\Gamma, x : T \vdash e : T'$ with $x \notin \operatorname{dom}(\Gamma)$ then $\Gamma \vdash \{v/x\}e : T'$

[10 marks]