## 2011 Paper 6 Question 8

## Mathematical Methods for Computer Science

Let $f[n]$ be a periodic sequence of period $N$ with $N$-point Discrete Fourier Transform (DFT) $F[k]$ given by

$$
F[k]=\sum_{n=0}^{N-1} f[n] e^{-2 \pi i n k / N}
$$

and inverse transform given by

$$
f[n]=\frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{2 \pi i n k / N}
$$

Define the power, $P$, of a periodic sequence, $f[n]$, of period $N$ by

$$
P=\frac{1}{N} \sum_{n=0}^{N-1}|f[n]|^{2}
$$

(a) For each fixed $k$ show that the periodic sequence $\frac{1}{N} F[k] e^{2 \pi i n k / N}$ has power $|F[k]|^{2} / N^{2}$.
[5 marks]
(b) If $g[n]$ is a periodic sequence of period $N$ with $N$-point DFT $G[k]$ show that

$$
\sum_{n=0}^{N-1} f[n] \overline{g[n]}=\frac{1}{N} \sum_{k=0}^{N-1} F[k] \overline{G[k]}
$$

(c) Show that the power of the periodic sequence $f[n]$ is equal to $\frac{1}{N^{2}} \sum_{k=0}^{N-1}|F[k]|^{2}$.
(d) Suppose that $f[n]$ is the periodic sequence given by $f[n]=\sin (2 \pi n / N)$ of period $N$. Recall that $\sin (\theta)=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$.
(i) Find $F[k]$ the $N$-point DFT of $f[n]$.
(ii) Show that the power of $f[n]$ is $1 / 2$.

