2011 Paper 6 Question 7

Mathematical Methods for Computer Science

- (a) Let X be a random variable with finite mean, E(X), and variance, Var(X), and let a > 0.
 - (i) Show Markov's inequality that $P(|X| \ge a) \le \frac{E(|X|)}{a}$. [5 marks]
 - (*ii*) Using Markov's inequality show that $P(|X| \ge a) \le \frac{E(X^2)}{a^2}$. [5 marks]
- (b) A study by a mobile phone operator shows that the expected number of simultaneous calls at a base station is 100. The actual number of simultaneous calls is a random variable, X, and so the base station is designed to handle a higher number of simultaneous calls up to a maximum of M = 150.
 - (i) Use the Markov inequality to bound the probability that the station will receive more than 150 calls. [5 marks]
 - (*ii*) Now suppose that we are given the additional information that the variance of the number of simultaneous calls is 50. Use the inequality from part (a)(ii) to give a second bound on the probability of exceeding 150 calls. [5 marks]