2011 Paper 6 Question 4

Computation Theory

(a) State precisely what it means for a function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ to be primitive recursive, giving exact definitions for all operations you use.
(b) State precisely what it means for a function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ to be λ-definable.
(c) For each of the following functions, show (using the definitions you gave) that it is primitive recursive and λ-definable.
(i) The function square: $\mathbb{N} \rightarrow \mathbb{N}$ given by square $(x)=x^{2}$.
(ii) The function fact: $\mathbb{N} \rightarrow \mathbb{N}$ given by $f a c t(x)=x$!.
(d) Give a definition of a function that is λ-definable but not primitive recursive.

