2011 Paper 6 Question 10

Semantics of Programming Languages

The following grammar specifies the types and expressions of a simple functional programming language.

$$
\begin{array}{lll}
\text { Types: } & T & ::=\mathbf{i n t} \mid T \rightarrow T^{\prime} \\
\text { Expressions: } & e & ::=n|x| e+e^{\prime}|\mathbf{f n}(x: T) \Rightarrow e| e e^{\prime}
\end{array}
$$

where n ranges over all integers, and x ranges over variables.
(a) Give a reasonable semantics for this language, by specifying a type system and a reduction relation. Use the call-by-name evaluation order.
(b) Write down all the reduction steps of the following expression. You do not need to give their derivations.

$$
(\mathbf{f n}(x: \mathbf{i n t}) \Rightarrow(\mathbf{f n}(x: \text { int }) \Rightarrow x+x))(1+2)(3+4)
$$

(c) Prove the following property of substitution. [Hint: Use rule induction for $\left.\Gamma, x: T \vdash e^{\prime}: T^{\prime}.\right]$
if $\Gamma \vdash e: T$ and $\Gamma, x: T \vdash e^{\prime}: T^{\prime}$ with $x \notin \operatorname{dom}(\Gamma)$ then $\Gamma \vdash\{e / x\} e^{\prime}: T^{\prime}$

