2011 Paper 2 Question 5

Discrete Mathematics II

Let A and B be sets. Let $F \subseteq \mathcal{P}(A) \times B$. So a typical element of F is a pair (X, b) where $X \subseteq A$ and $b \in B$. Define the function

$$
f: \mathcal{P}(A) \rightarrow \mathcal{P}(B)
$$

to be such that

$$
f(x)=\{b \mid \exists X \subseteq x .(X, b) \in F\}
$$

for $x \in \mathcal{P}(A)$.
(a) Show

$$
\text { if } x \subseteq y \text { then } f(x) \subseteq f(y)
$$

for all $x, y \in \mathcal{P}(A)$.
(b) Suppose

$$
x_{0} \subseteq x_{1} \subseteq \cdots \subseteq x_{n} \subseteq \cdots
$$

is a chain of subsets in $\mathcal{P}(A)$. Recall $\bigcup_{n \in \mathbb{N}_{0}} x_{n}=\left\{a \mid \exists n \in \mathbb{N}_{0} . a \in x_{n}\right\}$. Show that

$$
\bigcup_{n \in \mathbb{N}_{0}} f\left(x_{n}\right) \subseteq f\left(\bigcup_{n \in \mathbb{N}_{0}} x_{n}\right)
$$

[Hint: Use part (a).]
(c) Assume now that $F \subseteq \mathcal{P}_{\text {fin }}(A) \times B$ where $\mathcal{P}_{\text {fin }}(A)$ consists of the finite subsets of A. So now a typical element of F is a pair (X, b) where X is a finite subset of A and $b \in B$. Suppose $x_{0} \subseteq x_{1} \subseteq \cdots \subseteq x_{n} \subseteq \cdots$ is a chain of subsets in $\mathcal{P}(A)$. Show that

$$
f\left(\bigcup_{n \in \mathbb{N}_{0}} x_{n}\right) \subseteq \bigcup_{n \in \mathbb{N}_{0}} f\left(x_{n}\right)
$$

Deduce

$$
f\left(\bigcup_{n \in \mathbb{N}_{0}} x_{n}\right)=\bigcup_{n \in \mathbb{N}_{0}} f\left(x_{n}\right)
$$

(d) Show that (\dagger) need not hold if the set X in elements (X, b) of F is infinite.

