2011 Paper 2 Question 2

Digital Electronics

(a) Show how two 2-input NOR gates can be connected together to implement an RS latch. Describe its operation and give its truth table.
(b) Draw the state diagram for a synchronous modulo-4 up/down counter. The counter has two control inputs: M is set at logic " 0 " to cause the counter to count up, and at logic " 1 " to cause the counter to count down; E is set at logic " 1 " to enable the counter to count and at logic " 0 " to cause the counter to hold its current state.
(c) A synchronous binary up-counter having the state sequence

$$
1,2,3,4,5,6,1,2, \ldots
$$

is to be implemented using three D-type flip-flops. The flip-flop outputs are designated Q_{2}, Q_{1} and Q_{0}, where Q_{0} represents the least significant digit of the count.
(i) Give simplified expressions for the required next-state logic, making use of any unused states. Does this counter self-start?
[6 marks]
(ii) Give the new simplified expression required for D_{0} (the D-input of flip-flop Q_{0}) if the counter is now required to return to a count of 1 if an unused state is entered.
[4 marks]

