2011 Paper 2 Question 1

Digital Electronics

(a) Simplify the following expressions using Boolean algebra:
(i) $F=A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot \bar{B} \cdot C+A \cdot B \cdot C$
(ii) $F=(X+Y) \cdot(\bar{X}+Y+Z) \cdot(\bar{X}+Y+\bar{Z})$
(iii) $F=(A \cdot D+\bar{A} \cdot C) \cdot[\bar{B} \cdot(C+B \cdot \bar{D})]$
(b) Give the truth table for an encoder that accepts a sign bit, S, and two magnitude bits X_{0}, X_{1} and gives a three-bit output Y_{2}, Y_{1}, Y_{0} that are the two's complement encoding of the input.
(c) Using a Karnaugh map, simplify the following expression to yield a solution in a sum-of-products form:

$$
Y=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D+A \cdot \bar{B} \cdot \bar{C} \cdot D+A \cdot \bar{D}+\bar{A} \cdot B \cdot \bar{D}
$$

What problem may exist with a practical realisation of this solution, and how may it be cured?
(d) Simplify the following expression using a Karnaugh map to yield a solution in product-of-sums form and implement it using only NOR gates assuming complemented input variables are available:

$$
Y=(B+\bar{C}+\bar{D}) \cdot(\bar{A}+B+\bar{C}) \cdot(A+B+\bar{D}) \cdot(A+\bar{B}+\bar{C})
$$

Neglect any potential problems in the practical realisation of your solution.
[5 marks]

