
2010 Paper 3 Question 9

Further Java

Fellows at Norisbon College dine at a circular table on which there is a single fork
between each Fellow. Fellows either eat or think, and always start dinner thinking.
To eat, a Fellow first picks up the fork immediately to his left and, once successful,
picks up the fork immediately to his right. When a required fork is not on the
table, the Fellow waits, neither eating nor thinking, until the fork is returned to the
table. After eating, a Fellow returns both forks to the table. No cutlery is required
to think.

Your task is to model the above scenario in Java.

(a) Write a class called Fork with two public methods, pickUp and putDown. The
methods should take no arguments and return no result. An instance of Fork
should act as a lock to prevent concurrent access. In other words, once pickUp
has been called, all further calls to pickUp should block until putDown is called;
when putDown is called, one caller (if any) who is blocked should proceed.

[7 marks]

(b) Write a class called Fellow which inherits from the Thread class and
implements the abstract method run. The Fellow class should have a single
constructor which takes two Fork objects, one representing the fork to the
Fellow’s left, and one to the right. When run, an instance of Fellow should
think for ten seconds, eat for ten seconds and think for ten seconds before
terminating. [7 marks]

(c) Describe when and why your implementation may suffer deadlock. [2 marks]

(d) By altering the order in which the forks are picked up, describe how you would
modify your implementation so that it does not suffer deadlock. [4 marks]

1


